Question on: JAMB Mathematics - 1998
Find the positive value of x if the standard deviation of the numbers 1, x + 1 is 6
A
1
B
2
C
3
D
4
Ask EduPadi AI for a detailed answer
Correct Option: C
mean (x) = \(\frac{1 + x + 1 + 2x + 1}{3}\)
= \(\frac{3x + 3}{3}\)
= 1 + x
\(\begin{array}{c|c} X & (X -X) & (X -X)^2\ \hline 1 & -x & x^2 \ x + 1 & 0 & 0\2x + 1 & x & x^2\ \hline & & 2x^2\end{array}\)
S.D = \(\sqrt{\frac{\sum(x - 7)^2}{\sum f}}\)
= \(\sqrt{(6)}^2\)
= \(\frac{2x^2}{3}\)
= 2x2
= 18
x2 = 9
∴ x = \(\pm\) \(\sqrt{9}\)
= \(\pm\)3
= \(\frac{3x + 3}{3}\)
= 1 + x
\(\begin{array}{c|c} X & (X -X) & (X -X)^2\ \hline 1 & -x & x^2 \ x + 1 & 0 & 0\2x + 1 & x & x^2\ \hline & & 2x^2\end{array}\)
S.D = \(\sqrt{\frac{\sum(x - 7)^2}{\sum f}}\)
= \(\sqrt{(6)}^2\)
= \(\frac{2x^2}{3}\)
= 2x2
= 18
x2 = 9
∴ x = \(\pm\) \(\sqrt{9}\)
= \(\pm\)3
Add your answer
Please share this, thanks!
No responses