Question on: JAMB Mathematics - 1998

Find the value of k if \(\frac{k}{\sqrt{3} + \sqrt{2}}\) = k\(\sqrt{3 - 2}\)
A
3
B
2
C
\(\sqrt{3}\)
D
\(\sqrt 2\)
Ask EduPadi AI for a detailed answer
Correct Option: D
\(\frac{k}{\sqrt{3} + \sqrt{2}}\) = k\(\sqrt{3 - 2}\)

\(\frac{k}{\sqrt{3} + \sqrt{2}}\) x \(\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}}\)

= k\(\sqrt{3 - 2}\)

= k(\(\sqrt{3} - \sqrt{2}\))

= k\(\sqrt{3 - 2}\)

= k\(\sqrt{3}\) - k\(\sqrt{2}\)

= k\(\sqrt{3 - 2}\)

k2 = \(\sqrt{2}\)

k = \(\frac{2}{\sqrt{2}}\)

= \(\sqrt{2}\)

Add your answer

Notice: Please post responsibly.

Please share this, thanks!

No responses