Find the values of x and y respectively if begi... - JAMB Mathematics 2008 Question
Find the values of x and y respectively if
\(\begin{pmatrix} 1 & 0 \ -1 & -1\ 2 & 2 \end{pmatrix}\) + \(\begin{pmatrix} x & 1 \ -1 & 0\ y & -2 \end{pmatrix}\) = \(\begin{pmatrix} -2 & 1 \ -2 & -1\ -30 & 0 \end{pmatrix}\)
\(\begin{pmatrix} 1 & 0 \ -1 & -1\ 2 & 2 \end{pmatrix}\) + \(\begin{pmatrix} x & 1 \ -1 & 0\ y & -2 \end{pmatrix}\) = \(\begin{pmatrix} -2 & 1 \ -2 & -1\ -30 & 0 \end{pmatrix}\)
A
-3, -2
B
-5, -3
C
-2, -5
D
-3, -5
correct option: d
\(\begin{pmatrix} 1 & 0 \ -1 & -1\ 2 & 2 \end{pmatrix}\) + \(\begin{pmatrix} x & 1 \ -1 & 0\ y & -2 \end{pmatrix}\) = \(\begin{pmatrix} -2 & 1 \ -2 & -1\ -30 & 0 \end{pmatrix}\)
therefore, (x, y) = (-3, -5) respectively
therefore, (x, y) = (-3, -5) respectively
Please share this, thanks:
Add your answer
No responses