Find the values of y for which the expression f... - WAEC Mathematics 2016 Question
Find the values of y for which the expression \(\frac{y^2 - 9y + 18}{y^2 + 4y - 21}\) is undefined
A
6, -7
B
3, -6
C
3, -7
D
-3, -7
correct option: c
\(\frac{y^2 - 9y + 18}{y^2 + 4y - 21}\)
Factorize the denominator;
Y2 + 7y - 3y - 21
= y(y + 7) -3 (y + 7)
= (y - 3)(y + 7)
Hence the expression \(\frac{y^2 - 9y + 18}{y^2 + 4y - 21}\) is undefined
when y2 + 4y - 21 = 0
ie. y = 3 or -7
Factorize the denominator;
Y2 + 7y - 3y - 21
= y(y + 7) -3 (y + 7)
= (y - 3)(y + 7)
Hence the expression \(\frac{y^2 - 9y + 18}{y^2 + 4y - 21}\) is undefined
when y2 + 4y - 21 = 0
ie. y = 3 or -7
Please share this, thanks:
Add your answer
No responses