Question on: SS2 Mathematics - Linear Inequality in One Variable
\(\frac{x - 1}{2} - \frac{x}{3} \nless - \frac{1}{2}\ (Hint:\ \nless is\ \geq )\)
View related lesson
Ask EduPadi AI for a detailed answer
\[\frac{x - 1}{2} - \frac{x}{3} \nless - \frac{1}{2}\]
\[\frac{x - 1}{2} - \frac{x}{3} \geq - \frac{1}{2}\]
\[3(x - 1) - 2x \geq - 3\]
\[3x - 3 - 2x \geq - 3\]
\[x - 3 \geq - 3\]
\[x \geq - 3 + 3\]
\[x \geq 0\]
Add your answer
Please share this, thanks!
No responses