Question on: SS2 Mathematics - Linear Inequality in One Variable

\(\frac{x - 1}{2} - \frac{x}{3} \nless - \frac{1}{2}\ (Hint:\ \nless is\ \geq )\)

View related lesson
Ask EduPadi AI for a detailed answer

\[\frac{x - 1}{2} - \frac{x}{3} \nless - \frac{1}{2}\]

\[\frac{x - 1}{2} - \frac{x}{3} \geq - \frac{1}{2}\]

\[3(x - 1) - 2x \geq - 3\]

\[3x - 3 - 2x \geq - 3\]

\[x - 3 \geq - 3\]

\[x \geq - 3 + 3\]

\[x \geq 0\]

Add your answer

Notice: Please post responsibly.

Please share this, thanks!

No responses