Question on: WAEC Mathematics - 2010
Given that \(\frac{5^{n +3}}{25^{2n -2}}\) = 5o, find n
A
n = 1
B
n = 2
C
n = 3
D
n = 5
Ask EduPadi AI for a detailed answer
Correct Option: C
\(\frac{5^{n +3}}{25^{2n -2}}\) = 5o
\(\frac{5^{n + 3}}{5^{2(2n - 3)}}\) = 5o
n + 3 - 4n + 6 = 0
-3n + 9 = 0
-3n = -9
n = \(\frac{-9}{-3}\)
n = 3
\(\frac{5^{n + 3}}{5^{2(2n - 3)}}\) = 5o
n + 3 - 4n + 6 = 0
-3n + 9 = 0
-3n = -9
n = \(\frac{-9}{-3}\)
n = 3
Add your answer
Please share this, thanks!
No responses