Question on: JAMB Mathematics - 2015
Given that tan x = \(\frac{2}{3}\), where 0o d" x d" 90o, Find the value of 2sinx.
A
\(\frac{2\sqrt{13}}{13}\)
B
\(\frac{3\sqrt{13}}{13}\)
C
\(\frac{4\sqrt{13}}{13}\)
D
\(\frac{6\sqrt{13}}{13}\)
Ask EduPadi AI for a detailed answer
Correct Option: C
tan x = \(\frac{2}{3}\)(given), is illustrated in a right-angled \(\Delta\)
thus m2 = 22 + 32
= 4 + 9 = 13
m = \(\sqrt{13}\)
Hence, 2sin x = 2 x \(\frac{2}{m}\)
2 x\(\frac{2}{\sqrt{13}}\)
= \(\frac{4}{\sqrt{13}}\)
= \(\frac{4}{\sqrt{13}} = \frac{\sqrt{13}}{\sqrt{13}}\)
= \(\frac{4\sqrt{13}}{13}\)
thus m2 = 22 + 32
= 4 + 9 = 13
m = \(\sqrt{13}\)
Hence, 2sin x = 2 x \(\frac{2}{m}\)
2 x\(\frac{2}{\sqrt{13}}\)
= \(\frac{4}{\sqrt{13}}\)
= \(\frac{4}{\sqrt{13}} = \frac{\sqrt{13}}{\sqrt{13}}\)
= \(\frac{4\sqrt{13}}{13}\)
Add your answer
Please share this, thanks!
No responses