If 3214 is divided by 234 and leaves a remainde... - JAMB Mathematics 2005 Question
If 3214 is divided by 234 and leaves a remainder r, what is the value of r?
A
zero
B
1
C
2
D
3
correct option: c
\(\frac{321_4}{23_4}\=\frac{(3\times4^{2})+(2\times4^{1})+(1\times4^{0})}{(2\times4^{0})+(3\times4^{0})}\=\frac{3\times16+2\times4+1\times1}{2\times4+3\times1}\=\frac{48+8+1}{8+3}\=\frac{57}{11}=5\hspace{1mm}remainder\hspace{1mm}2\∴r=2_{10} \ Now\hspace{1mm}convert\hspace{1mm}2_{10} \hspace{1mm}to\hspace{1mm}base\hspace{1mm}4\\frac{4}{2} = 2\\frac{4}{0}=0\hspace{1mm}or\hspace{1mm}2\∴r=2\)
Please share this, thanks:
Add your answer
No responses