Question on: JAMB Mathematics - 2022
If A = \(\begin{pmatrix} 2 & 1 \ 2 & 3 \ 1 & 2 \end{pmatrix}\) and B = \(\begin{pmatrix} 3 & 2 \ 4 & 2 \end{pmatrix}\). Find AB
\(\begin{pmatrix} 18 & 6 \ 12 & 10 \ 10 & 6 \end{pmatrix}\)
\(\begin{pmatrix} 10 & 6 \ 13 & 10 \ 12 & 6 \end{pmatrix}\)
\(\begin{pmatrix} 10 & 6 \ 12 & 10 \ 11 & 6 \end{pmatrix}\)
\(\begin{pmatrix} 10 & 6 \ 18 & 10 \ 11 & 6 \end{pmatrix}\)
To find the product AB, we need to perform matrix multiplication. Matrix A is a 3x2 matrix, and Matrix B is a 2x2 matrix. The resulting matrix will therefore be a 3x2 matrix.
Here's how to calculate the elements of the resulting matrix:
- Element (1,1): (2 * 3) + (1 * 4) = 6 + 4 = 10
- Element (1,2): (2 * 2) + (1 * 2) = 4 + 2 = 6
- Element (2,1): (2 * 3) + (3 * 4) = 6 + 12 = 18
Add your answer
Please share this, thanks!
No responses