Question on: JAMB Mathematics - 2008

If (\frac{1 + \sqrt{2}}{1 - \sqrt{2}}) is expressed in the form x + y(\sqrt{2}). Find the values of x and y

A
(-3, -2)
B
(-2, 3)
C
(3, 2)
D
(2, -3)
Ask EduPadi AI for a detailed answer
Correct Option: A

(\frac{1 + \sqrt{2}}{1 - \sqrt{2}}) x (\frac{1 + \sqrt{2}}{1 + \sqrt{2}})

= (\frac{(1 + \sqrt{2}) (1 + \sqrt{2})}{(1 - \sqrt{2})(1 + \sqrt{2})})

= (\frac{1 + \sqrt{2} + \sqrt{2} + (\sqrt{2})^2}{1 + \sqrt{2} - \sqrt{2} - (\sqrt{2})^2})

= (\frac{1 + 2\sqrt{2} + \sqrt{2}}{1^2 - 2})

= (\frac{3 + 2\sqrt{2}}{-1})

-3 - 2(\sqrt{2}) = x + y(\sqrt{2})

x = -3, y = -2

= (-3, -2)

Add your answer

Notice: Please post responsibly.

Please share this, thanks!

No responses