Question on: JAMB Mathematics - 2017
If (\frac{2 \sqrt{3} - \sqrt{2}}{\sqrt{3} + 2 \sqrt{2}}) = m + n √ 6,
find the values of m and n respectively
(\frac{2 \sqrt{3} - \sqrt{2}}{\sqrt{3} + 2 \sqrt{2}})= m + n√6
(\frac{2 \sqrt{3} - \sqrt{2}}{\sqrt{3} + 2 \sqrt{2}}) x (\frac{\sqrt{3} - 2 \sqrt{2}}{\sqrt{3} - \sqrt{2}})
(\frac{2 \sqrt{3} (\sqrt{3} - 2 \sqrt{2}) - \sqrt{2}(\sqrt{3} - 2 \sqrt{2})}{\sqrt{3}(\sqrt{3} - 2 \sqrt{2}) + 2 \sqrt{2}(\sqrt{3} - 2 \sqrt{2})})
(\frac{2 \times 3 - 4\sqrt{6} - 6 + 2 \times 2}{3 - 2 \sqrt{6} + 2 \sqrt{6} - 4 \times 2})
= (\frac{6 - 4 \sqrt{6} - \sqrt{6} + 4}{3 - 8})
= (\frac{0 - 4 \sqrt{6} - 6}{5})
= (\frac{10 - 5 \sqrt{6}}{5})
= − 2 + √6
∴ m + n(\sqrt{6}) = − 2 + √6
m = − 2, n = 1
Add your answer
Please share this, thanks!
No responses