If log318 log33 - log3x 3 Find x - JAMB Mathematics 2011 Question
If log318 + log33 - log3x = 3, Find x.
A
1
B
2
C
o
D
3
correct option: b
log\(_{3}^{18}\) + log\(_{3}^{3}\) - log\(_{3}^{x}\) = 3
log\(_{3}^{18}\) + log\(_{3}^{3}\) - log\(_{3}^{x}\) = 3log33
log\(_{3}^{18}\) + log\(_{3}^{3}\) - log\(_{3}^{x}\) = log333
log3(\(\frac{18 \times 3}{X}\)) = log333
\(\frac{18 \times 3}{X}\) = 33
18 x 3 = 27 x X
x = \(\frac{18 \times 3}{27}\)
= 2
log\(_{3}^{18}\) + log\(_{3}^{3}\) - log\(_{3}^{x}\) = 3log33
log\(_{3}^{18}\) + log\(_{3}^{3}\) - log\(_{3}^{x}\) = log333
log3(\(\frac{18 \times 3}{X}\)) = log333
\(\frac{18 \times 3}{X}\) = 33
18 x 3 = 27 x X
x = \(\frac{18 \times 3}{27}\)
= 2
Please share this, thanks:
Add your answer
No responses