If p 1 2P - 10 1 - 4p2are three consecutive ter... - JAMB Mathematics 1998 Question
If p + 1, 2P - 10, 1 - 4p2are three consecutive terms of an arithmetic progression, find the possible values of p
A
-4, 2
B
-3, \(\frac{4}{11}\)
C
-\(\frac{4}{11}\), 2
D
5, -3
correct option: c
2p - 10 = \(\frac{p + 1 + 1 - 4P^2}{2}\) (Arithmetic mean)
= 2(2p - 100 = p + 2 - 4P2)
= 4p - 20 = p + 2 - 4p2
= 4p2 + 3p - 22 = 0
= (p - 2)(4p + 11) = 0
∴ p = 2 or -\(\frac{4}{11}\)
= 2(2p - 100 = p + 2 - 4P2)
= 4p - 20 = p + 2 - 4p2
= 4p2 + 3p - 22 = 0
= (p - 2)(4p + 11) = 0
∴ p = 2 or -\(\frac{4}{11}\)
Please share this, thanks:
Add your answer
No responses