Score High in JAMB With EduPadi CBT App

Practice JAMB CBT, get instant results, and understand solutions in-depth with smart AI insights.

Learn more…

Question on: JAMB Mathematics - 2013

If S = \(\sqrt{t^2 - 4t + 4}\), find t in terms of S
A
S2 - 2
B
S + 2
C
S - 2
D
S2 + 2
Ask EduPadi AI for a detailed answer
Correct Option: B
S = \(\sqrt{t^2 - 4t + 4}\)

S2 = t2 - 4t + 4

t2 - 4t + 4 - S2 = 0

Using \(t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)

Substituting, we have;

Using \(t = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(4 - S^2)}}{2(1)}\)

\(t = \frac{4 \pm \sqrt{16 - 4(4 - S^2)}}{2}\)

\(t = \frac{4 \pm \sqrt{16 - 16 + 4S^2}}{2}\)

\(t = \frac{4 \pm \sqrt{4S^2}}{2}\)

\(t = \frac{2(2 \pm S)}{2}\)

Hence t = 2 + S or t = 2 - S

Add your answer

Notice: Please post responsibly.

Please share this, thanks!

No responses