Question on: JAMB Mathematics - 1992

If x = 3 - (\sqrt{3}), find x2 + (\frac{36}{x^2})

A
9
B
18
C
24
D
27
Ask EduPadi AI for a detailed answer
Correct Option: C

x = 3 - (\sqrt{3})

x2 = (3 - (\sqrt{3}))2

= 9 + 3 - 6(\sqrt{34})

= 12 - 6(\sqrt{3})

= 6(2 - (\sqrt{3}))

∴ x2 + (\frac{36}{x^2}) = 6(2 - (\sqrt{3})) + (\frac{36}{6(2 - \sqrt{3})})

6(2 - (\sqrt{3})) + (\frac{6}{2 - \sqrt{3}}) = 6(- (\sqrt{3})) + (\frac{6(2 + \sqrt{3})}{(2 - \sqrt{3})(2 + \sqrt{3})})

= 6(2 - (\sqrt{3})) + (\frac{6(2 + \sqrt{3})}{4 - 3})

6(2 - (\sqrt{3})) + 6(2 + (\sqrt{3})) = 12 + 12

= 24

Add your answer

Notice: Please post responsibly.

Please share this, thanks!

No responses