Question on: SS3 Mathematics - Trigonometric Identities and Equations
If \(x = \sin\theta\), simplify \(\frac{x}{\sqrt{1 - x^{2}}}\)
View related lesson
A
\(\cos^{2}\theta\)
B
\(\tan\theta\)
C
\(\sin\frac{\theta}{2}\)
D
\(\tan^{2}\theta\)
Ask EduPadi AI for a detailed answer
Correct Option: B
\(\frac{x}{\sqrt{1 - x^{2}}} = \ \frac{\sin\theta}{\sqrt{1 - {(\sin x)}^{2}}} = \frac{\sin\theta}{\sqrt{1 - \sin^{2}\theta}} = \frac{\sin\theta}{\sqrt{\cos^{2}\theta}} = \frac{\sin\theta}{\cos\theta} = \tan\theta\)
Add your answer
Please share this, thanks!
No responses