Question on: SS3 Mathematics - Trigonometric Identities and Equations

If \(x = \sin\theta\), simplify \(\frac{x}{\sqrt{1 - x^{2}}}\)

View related lesson
A

\(\cos^{2}\theta\)

B

\(\tan\theta\)

C

\(\sin\frac{\theta}{2}\)

D

\(\tan^{2}\theta\)

Ask EduPadi AI for a detailed answer
Correct Option: B

\(\frac{x}{\sqrt{1 - x^{2}}} = \ \frac{\sin\theta}{\sqrt{1 - {(\sin x)}^{2}}} = \frac{\sin\theta}{\sqrt{1 - \sin^{2}\theta}} = \frac{\sin\theta}{\sqrt{\cos^{2}\theta}} = \frac{\sin\theta}{\cos\theta} = \tan\theta\)

Add your answer

Notice: Please post responsibly.

Please share this, thanks!

No responses