Question on: SS1 Mathematics - Trigonometric Ratios

In a right-angled triangle where \(\tan\theta = \frac{4}{3}\). Prove \(\sqrt{\frac{cot\theta}{\tan\theta}} = \frac{3}{4}\)
View related lesson
Ask EduPadi AI for a detailed answer
If \(\tan\theta = \frac{4}{3}\)
\[\cot\theta = \frac{1}{\tan\theta} = \frac{3}{4}\]
\[\sqrt{\frac{cot\theta}{\tan\theta}} = \ \sqrt{\frac{3}{4} \div \frac{4}{3}} = \ \sqrt{\frac{3}{4} \times \frac{3}{4}} = \sqrt{\frac{9}{16}} = \ \frac{3}{4}\]
Add your answer
Please share this, thanks!
No responses