Home » Classroom » SS3 Mathematics Matrices and Determinants Question

Let A begin bmatrix 1 amp 4 2 amp 3 end bmatrix... - SS3 Mathematics Matrices and Determinants Question

Let \(A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \\ \end{bmatrix}\), \(B = \begin{bmatrix} 0 & - 3 \\ 5 & 1 \\ \end{bmatrix}\) and \(C = \begin{bmatrix} 1 & 2 \\ 6 & - 1 \\ \end{bmatrix}\). Find \(2A - 3B + C\)

A

\(\begin{bmatrix} 8 & 28 \\ 4 & 0 \\ \end{bmatrix}\)

B

\(\begin{bmatrix} 3 & 19 \\ - 5 & 2 \\ \end{bmatrix}\)

C

\(\begin{bmatrix} 2 & - 7 \\ - 7 & 3 \\ \end{bmatrix}\)

D

\(\begin{bmatrix} 4 & 16 \\ 8 & - 8 \\ \end{bmatrix}\)

correct option: b

Let \(A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \\ \end{bmatrix}\), \(B = \begin{bmatrix} 0 & - 3 \\ 5 & 1 \\ \end{bmatrix}\) and \(C = \begin{bmatrix} 1 & 2 \\ 6 & - 1 \\ \end{bmatrix}\)

\[2A - 3B + C = \ \left\lbrack 2\begin{bmatrix} 1 & 4 \\ 2 & 3 \\ \end{bmatrix} - 3\begin{bmatrix} 0 & - 3 \\ 5 & 1 \\ \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 6 & - 1 \\ \end{bmatrix} \right\rbrack\]

\(= \ \left\lbrack \begin{bmatrix} 2 & 8 \\ 4 & 6 \\ \end{bmatrix} - \begin{bmatrix} 0 & - 9 \\ 15 & 3 \\ \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 6 & - 1 \\ \end{bmatrix} \right\rbrack = \begin{bmatrix} 2 - 0 + 1 & 8 - ( - 9) + 2 \\ 4 - 15 + 6 & 6 - 3 + ( - 1) \\ \end{bmatrix}\)

\(= \begin{bmatrix} 3 & 19 \\ - 5 & 2 \\ \end{bmatrix}\)

Please share this, thanks:

Add your answer

Notice: Posting irresponsibily can get your account banned!

No responses