Question on: SS3 Mathematics - Matrices and Determinants

Let \(A = \begin{bmatrix} 2 & - 4 & 3 \\ 5 & 1 & 0 \\ \end{bmatrix}\) and \(B = \begin{bmatrix} 1 & 4 & - 2 \\ - 3 & 3 & - 1 \\ \end{bmatrix}\). Find \(B - A\)

View related lesson
A

\[\begin{bmatrix} - 1 & 8 & - 5 \\ - 8 & 2 & - 1 \\ \end{bmatrix}\]

B

\[\begin{bmatrix} - 1 & 4 & 5 \\ 8 & 2 & - 1 \\ \end{bmatrix}\]

C

\[\begin{bmatrix} 1 & 8 & 5 \\ 8 & 2 & 1 \\ \end{bmatrix}\]

D

\[\begin{bmatrix} 2 & 4 & 1 \\ 0 & 6 & 3 \\ \end{bmatrix}\]

Ask EduPadi AI for a detailed answer
Correct Option: A

Let \(A = \begin{bmatrix} 2 & - 4 & 3 \\ 5 & 1 & 0 \\ \end{bmatrix}\) and \(B = \begin{bmatrix} 1 & 4 & - 2 \\ - 3 & 3 & - 1 \\ \end{bmatrix}\)

\[B - A = \begin{bmatrix} 1 - 2 & 4 - ( - 4) & - 2 - 3 \\ - 3 - 5 & 3 - 1 & - 1 - 0 \\ \end{bmatrix}\]

\(= \begin{bmatrix} - 1 & 8 & - 5 \\ - 8 & 2 & - 1 \\ \end{bmatrix}\)

Add your answer

Notice: Please post responsibly.

Please share this, thanks!

No responses