Question on: JAMB Mathematics - 1998
Let = (\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}) p = (\begin{pmatrix} 2 & 3 \ 4 & 5 \end{pmatrix}) Q = (\begin{pmatrix} u & 4+u \ -2v & v \end{pmatrix}) be 2 x 2 matrices such that PQ = 1. Find (u, v)
PQ = (\begin{pmatrix} 2 & 3 \ 4 & 5 \end{pmatrix})(\begin{pmatrix} u & 4+u \ -2v & v \end{pmatrix})
= (\begin{pmatrix} (2u-6v & 2(4+u) +3v)\ 4u-10v & 4(4+u)+5v \end{pmatrix})
= (\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix})
2u - 6v = 1.....(i)
4u - 10v = 0.......(ii)
2(4 + u) + 3v = 0......(iii)
4(4 + u) + 5v = 1......(iv)
2u - 6v = 1 .....(i) x 2
4u - 10v = 0......(ii) x 1
(\frac{\text{4u - 12v = 0}}{\text{-4u - 10v = 0}})
-2v = 2 = v = -1
2u - 6(-1) = 1 = 2u = 5
u = -(\frac{5}{2})
∴ (U, V) = (-(\frac{5}{2}) - 1)
Add your answer
Please share this, thanks!
No responses