Make Q the subject of the formula when L frac 4... - JAMB Mathematics 2008 Question
Make Q the subject of the formula when L = \(\frac{4}{3}\) m\(\sqrt{PQ}\)
A
\(\frac{9L^2}{16m^2P}\)
B
\(\frac{3L}{4m \sqrt{P}}\)
C
\(\frac {\sqrt{3L}}{4mP}\)
D
\(\frac{3L^2}{16m^2P}\)
correct option: a
L = \(\frac {4}{3}\) m \(\sqrt{PQ}\)
make Q the subject
\(\frac {L}{1}\) = \(\frac {4}{3}\) m \(\sqrt{PQ}\)
3L = 4m \(\sqrt{PQ}\)
Taking the square of both sides
(3L)2 = (4m \(\sqrt{PQ}\))
\(\frac {9L^2}{16m^2P}\) = \(\frac {16m^2PQ}{16m^2P}\)
Q = \(\frac {9L^2}{16m^2P}\)
make Q the subject
\(\frac {L}{1}\) = \(\frac {4}{3}\) m \(\sqrt{PQ}\)
3L = 4m \(\sqrt{PQ}\)
Taking the square of both sides
(3L)2 = (4m \(\sqrt{PQ}\))
\(\frac {9L^2}{16m^2P}\) = \(\frac {16m^2PQ}{16m^2P}\)
Q = \(\frac {9L^2}{16m^2P}\)
Please share this, thanks:
Add your answer
No responses