Question on: WAEC Mathematics - 1998
Simplify \(\frac{8^{\frac{2}{3}}*27^{\frac{-1}{3}}}{64^{\frac{1}{3}}}\)
A
-3
B
\(\frac{1}{9}\)
C
\(\frac{1}{3}\)
D
\(\frac{27}{8}\)
Ask EduPadi AI for a detailed answer
Correct Option: C
Here's how to simplify the expression:
1. **Rewrite the terms with fractional exponents:**
* \\(8^{\\frac{2}{3}} = (2^3)^{\\frac{2}{3}} = 2^{3 \* \\frac{2}{3}} = 2^2 = 4\\)
* \\(27^{\\frac{-1}{3}} = (3^3)^{\\frac{-1}{3}} = 3^{3 \* \\frac{-1}{3}} = 3^{-1} = \\frac{1}{3}\\)
* \\(64^{\\frac{1}{3}} = (4^3)^{\\frac{1}{3}} = 4^{3 \* \\frac{1}{3}} = 4^1 = 4\\)
2. **Substitute the simplified terms back into the expression:**
\\(\\frac{8^{\\frac{2}{3}}\*27^{\\frac{-1}{3}}}{64^{\\frac{1}{3}}} = \\frac{4 \* \\frac{1}{3}}{4}\\)
3. **Simplify the fraction:**
\\(\\frac{4 \* \\frac{1}{3}}{4} = \\frac{\\frac{4}{3}}{4} = \\frac{4}{3} \* \\frac{1}{4} = \\frac{1}{3}\\)
Add your answer
Please share this, thanks!
No responses