Question on: SS2 Mathematics - Algebraic Fractions
Simplify \(\frac{\frac{1}{2x} - \frac{4}{y}}{\frac{1}{x} + \frac{2}{3y}}\)
\(Given\) \(\frac{\frac{1}{2x} - \frac{4}{y}}{\frac{1}{x} + \frac{2}{3y}}\)
\(Numerator\): \(\frac{1}{2x} - \frac{4}{y} = \ \frac{y - 8x}{2xy}\)
\(Denominator\): \(\frac{1}{x} + \frac{2}{3y} = \ \frac{3y + 2x}{3xy}\)
\(\frac{\frac{1}{2x} - \frac{4}{y}}{\frac{1}{x} + \frac{2}{3y}} = \ \frac{\frac{y - 8x}{2xy}}{\frac{3y + 2x}{3xy}} = \ \frac{y - 8x}{2xy} \div \frac{3y + 2x}{3xy} = \frac{y - 8x}{2xy} \times \frac{3xy}{3y + 2x} = \ \frac{y - 8x}{2} \times \frac{3}{3y + 2x} = \frac{3(y - 8x)}{2(3y + 2x)}\)
Add your answer
Please share this, thanks!
No responses