Question on: JAMB Mathematics - 1994
Simplify \(\sqrt{48}\) - \(\frac{9}{\sqrt{3}}\) + \(\sqrt{75}\)
A
5β3
B
6β3
C
8β3
D
18β3
Ask EduPadi AI for a detailed answer
Correct Option: B
\(\sqrt{48}\) - \(\frac{9}{\sqrt{3}}\) + \(\sqrt{75}\)
Rearrange = \(\sqrt{48}\) + \(\sqrt{75}\) - \(\frac{9}{\sqrt{3}}\)
= (β16 x β3) + (β25 x β3) - \(\frac{9}{\sqrt{3}}\)
=4β3 + 5β3 - \(\frac{9}{\sqrt{3}}\)
Rationalize \(\to\) 9β3 = \(\frac{9}{\sqrt{3}}\) x \(\frac{\sqrt{3}}{\sqrt{3}}\)
= \(\frac{9\sqrt{3}}{\sqrt{9}}\) - \(\frac{9\sqrt{3}}{\sqrt{3}}\)
= 3β3
Rearrange = \(\sqrt{48}\) + \(\sqrt{75}\) - \(\frac{9}{\sqrt{3}}\)
= (β16 x β3) + (β25 x β3) - \(\frac{9}{\sqrt{3}}\)
=4β3 + 5β3 - \(\frac{9}{\sqrt{3}}\)
Rationalize \(\to\) 9β3 = \(\frac{9}{\sqrt{3}}\) x \(\frac{\sqrt{3}}{\sqrt{3}}\)
= \(\frac{9\sqrt{3}}{\sqrt{9}}\) - \(\frac{9\sqrt{3}}{\sqrt{3}}\)
= 3β3
Add your answer
Please share this, thanks!
No responses