Question on: JAMB Mathematics - 1998
solve the equation cos x + sin x (\frac{1}{cos x - sinx}) for values of such that 0 (\leq) x < 2(\pi)
A
\(\frac{\pi}{2}\), \(\frac{3\pi}{2}\)
B
\(\frac{\pi}{3}\), \(\frac{2\pi}{3}\)
C
0, \(\frac{\pi}{3}\)
D
0, \(\pi\)
Ask EduPadi AI for a detailed answer
Correct Option: D
cos x + sin x (\frac{1}{cos x - sinx})
= (cosx + sinx)(cosx - sinx) = 1
= cos2x + sin2x = 1
cos2x - (1 - cos2x) = 1
= 2cos2x = 2
cos2x = 1
= cosx = (\pm)1 = x
= cos-1x ((\pm), 1)
= 0, (\pi) (\frac{3}{2}\pi), 2(\pi)
(possible solution)
Add your answer
Please share this, thanks!
No responses