Standard Derivatives Of Some Basic Functions - SS3 Mathematics Lesson Note
\[\mathbf{x}\] |
---|
\[\mathbf{f'(x)}\]
\[a\]
\[0\]
\[{ax}^{n}\]
\[{anx}^{n - 1}\]
\[\sin x\]
\[\cos x\]
\[\cos x\]
\[- \sin x\]
\[\tan x\]
\[\sec^{2}x\]
\[e^{x}\]
\[e^{x}\]
\[a^{x}\]
\[a^{x}\log_{e}a\]
\[\log_{e}x\]
\[\frac{1}{x}\]
\[\log_{a}x\]
\[\frac{1}{x\ \log_{e}a}\]
\[\cot x\]
\[- {cosec}^{2}x\ \]
Where \(a\) is a constant
Example 2 Obtain the derivative of the following functions of \(x\): (i) \(y = 2x^{2} - 7\) (ii) \(y = 3e^{x}\) (iii) \(y = - 2\cos x\) (iv) \(y = 3x^{- 4}\) (v) \(y = 2^{x}\) (vi) \(y = 2\log_{10}x\)
Solution
(i) \(y = 2x^{2} - 7\)
\[\frac{dy}{dx} = \frac{d}{dx}\left( 2x^{2} \right) - \frac{d}{dx}(7)\]
\[\frac{dy}{dx} = 2(2x^{2 - 1}) - 0\]
\[\frac{dy}{dx} = 2(2x^{1}) - 0\]
\[\frac{dy}{dx} = 4x - 0\]
\[\frac{dy}{dx} = 4x\]
(ii) \(y = 3e^{x}\)
\[\frac{dy}{dx} = 3\frac{d}{dx}(e^{x})\]
\[\frac{dy}{dx} = 3(e^{x})\]
\[\frac{dy}{dx} = 3e^{x}\]
(iii) \(y = - 2\cos x\)
\[\frac{dy}{dx} = - 2\frac{d}{dx}(\cos x)\]
\[\frac{dy}{dx} = - 2( - \sin x)\]
\[\frac{dy}{dx} = 2\sin x\]
(iv) \(y = 3x^{- 4}\)
\[\frac{dy}{dx} = 3\frac{d}{dx}(x^{- 4})\]
\[\frac{dy}{dx} = 3({- 4x}^{- 4 - 1})\]
\[\frac{dy}{dx} = 3({- 4x}^{- 5})\]
\[\frac{dy}{dx} = {- 12x}^{- 5}\]
(v) \(y = 2^{x}\)
\[\frac{dy}{dx} = \frac{d}{dx}(2^{x})\]
\[\frac{dy}{dx} = 2^{x}\log_{e}2\]
(vi) \(y = 2\log_{10}x\)
\[\frac{dy}{dx} = \frac{d}{dx}(2\log_{10}x)\]
\[\frac{dy}{dx} = 2\frac{d}{dx}(\log_{10}x)\]
\[\frac{dy}{dx} = 2\left( \frac{1}{x\ \log_{e}10} \right)\]
\[\frac{dy}{dx} = \frac{2}{x\ \log_{e}10}\]