1991 - JAMB Mathematics Past Questions and Answers - page 2

11
Musa borrows N10.00 at 2% per month simple interest and repays N8.00 after 4 months. How much does he still owe
A
N10.80
B
N10.67
C
N2.80
D
N2.67
correct option: c

I = (\frac{PRT}{100})

= (\frac{10 \times 2 \times 4}{100})

= (\frac{4}{5})

= 0.8

Total amount = N10.80

He pays N8.00

Remainder = 10.80 - 8.00

= N2.80

Users' Answers & Comments
12
If 3 gallons of spirit containing 20% water are added to 5 gallons of another spirit containing 15% water, what percentage of the mixture is water?
A
2\(\frac{4}{5}\)%
B
16\(\frac{7}{8}\)%
C
18\(\frac{1}{8}\)%
D
18\(\frac{7}{8}\)%
correct option: b

% of water in the mixture

= (\frac{\text{Total Amount of water}}{\text{Total quantity of spirit}}) x (\frac{100}{1})

(\frac{3(\frac{20}{100}) + 5 (\frac{15}{100})}{3 + 5}) x (\frac{100}{1})

= (\frac{\frac{6}{10} + \frac{75}{100}}{8}) x (\frac{100}{1})

= (\frac{0.6 + 0.75}{8}) x (\frac{100}{1})


= (\frac{1.35}{8}) x (\frac{100}{1})

= (\frac{33.75}{2})

= 16.875

= 16(\frac{7}{8})

Users' Answers & Comments
13
What is the product of \(\frac{27}{5^1}\)(3)-3 and \(\frac{(1)^{-1}}{5}\)?
A
5
B
3
C
1
D
\(\frac{1}{25}\)
correct option: c

(\frac{27}{5^1})(3)-3 x (\frac{(1)^{-1}}{5}) = (\frac{27}{5}) x (\frac{1}{3^3}) x (\frac{1}{\frac{1}{5}})

= (\frac{27}{5}) x (\frac{1}{27}) x (\frac{5}{1})

= 1

Users' Answers & Comments
14
Simplify 2log \(\frac{2}{5}\) - log\(\frac{72}{125}\) + log 9
A
1 - 4 log3
B
-1 + 2 log 3
C
-1 + 5 log2
D
1 - 2log 2
correct option: d

2log (\frac{2}{5}) - log(\frac{72}{125}) + log 9

[(\frac{2}{5}))2 x 9] = log (\frac{4}{25}) x (\frac{9}{1}) x (\frac{125}{72})

= log (\frac{72}{125})

= log (\frac{5}{2})

= log (\frac{10}{4})

= log 10 - log 4

= log10 10 - log10 22

= 1 - 2 log2

Users' Answers & Comments
15
Simplify \(\frac{1}{1 + \sqrt{5}}\) - \(\frac{1}{1 - \sqrt{5}}\)
A
- \(\frac{1}{2}\sqrt{5}\)
B
\(\frac{1}{2}\sqrt{5}\)
C
-- \(\frac{1}{4}\sqrt{5}\)
D
5
correct option: a

(\frac{1}{1 + \sqrt{5}}) - (\frac{1}{1 - \sqrt{5}})

= (\frac{3 - \sqrt{5} - 3 - \sqrt{5}}{(3 + \sqrt{5}) (3 - \sqrt{5}})

= (\frac{-2\sqrt{5}}{9 - 5})

= (\frac{-2\sqrt{5}}{4})

= - (\frac{1}{2}\sqrt{5})

Users' Answers & Comments
16
Rationalize \(\frac{2\sqrt{3} + 3 \sqrt{2}}{3\sqrt{2} - 2 \sqrt{3}}\)
A
5 - 2\(\sqrt{6}\)
B
5 + 2\(\sqrt{6}\)
C
5\(\sqrt{6}\)
D
5
correct option: b

(\frac{2\sqrt{3} + 3 \sqrt{2}}{3\sqrt{2} - 2 \sqrt{3}})

= (\frac{2\sqrt{3} + 3 \sqrt{2}}{3\sqrt{2} - 2 \sqrt{3}}) x (\frac{3\sqrt{2} + 2 \sqrt{3}}{3\sqrt{2} - 2 \sqrt{3}})

(\frac{4(3) + 9(2) + 2(6) \sqrt{6}}{9(2) - 4(3)})

(\frac{12 + 18 + 12\sqrt{6}}{1`8 - 12})

= (\frac{30 + 12\sqrt{6}}{6})

= 5 + 2(\sqrt{6})

Users' Answers & Comments
17
Multiply (x2 - 3x + 1) by (x - a)
A
x3 - (3 + a) x2 + (1 + 3a)x - a
B
x3 - (3 - a)x2 + 3ax - a
C
x3 - (3 - a)x2 - (1 = 3a) - a
D
x3 + (3 - a)x2 + (1 + 3a) - a
correct option: a

(x2 - 3x + 1)(x - a) = x3 - 3x2 + x - ax2 + 3ax - a

= x3 - (3 + a) x2 + (1 + 3a)x - a

Users' Answers & Comments
18
Evaluate \(\frac{xy^2 - x^2y}{x^2 - xy^1}\) When x = -2 and y = 2
A
3
B
-\(\frac{3}{5}\)
C
\(\frac{3}{5}\)
D
-3
correct option: d

(\frac{xy^2 - x^2y}{x^2 - xy^1})

= (\frac{(-2)(3)^2 - (-2)^2(3)}{(-2)^2 - (-2)(3)})

= -30

= -3

Users' Answers & Comments
19
A car travels from calabar to Enugu, a distance of P km with an average speed of U km per hour and continues to benin, a distance of Q km, with an average speed of Wkm per hour. Find its average speed from Calabar to Benin
A
\(\frac{(p + q)}{pw + qu}\)
B
\(\frac{uw(p + q)}{pw + qu}\)
C
\(\frac{uw(p + q)}{pw}\)
D
\(\frac{uw}{pw + qu}\)
correct option: b

Average speed = (\frac{\text{total Distance}}{\text{Total Time})

from Calabar to Enugu in time t1, hence

t1 = (\frac{P}{U}) also from Enugu to Benin

t2 (\frac{q}{w})

Av. speed = (\frac{p + q}{t_1 + t_2}

= (\frac{p + q}{\frac{p}{u} + \frac{q}{w})

= p + q x (\frac{uw}{pw + qu})

= (\frac{uw(p + q)}{pw + qu})

Users' Answers & Comments
20
If w varies inversely as \(\frac{ur}{u + r}\) and is equal to 8 when

u = 2 and r = 6, find a relationship between u, v, w.
A
urw = 16(u + v)
B
16ur = 3w(u + v)
C
urw = 12(u + v)
D
12urw = u + v
correct option: c

W (\alpha) (\frac{\frac{1}{uv}}{u + v})

∴ w = (\frac{\frac{k}{uv}}{u + v})

= (\frac{k(u + v)}{uv})

w = (\frac{k(u + v)}{uv})

w = 8, u = 2 and v = 6

8 = (\frac{k(2 + 6)}{2(6)})

= (\frac{k(8)}{12})

k = 12

Users' Answers & Comments
Please share this, thanks: