1992 - JAMB Mathematics Past Questions and Answers - page 2
Given S = ut + (\frac{1}{2} at^2)
S = ut + (\frac{1}{2} at^2)
∴ 2S = 2ut + at2
= at2 + 2ut - 2s = 0
t = (\frac{-2u \pm 4u^2 + 2as}{2a})
= -2u (\pi) (\frac{\sqrt{u^2 4u^2 + 2as}}{2a})
= (\frac{1}{a}) (-u + (\sqrt{U^2 - 2as}))
Users' Answers & Commentsx + 1 is a factor of x3 + 3x2 + kx + 4
Let f(x) = x3 + 3x2 + kx + 4
∴ f(-1) = (-1)3 + 3(-1)2 + k(-1) + 4 = 0
-1 + 3 - k + 4 = 0
∴ k = 6
Users' Answers & Comments(\frac{3}{x^2 + x - 2}) = (\frac{3}{(x - 1)(x + 1)})
(\frac{A}{x - 1}) + (\frac{B}{x + 2})
A(x + 2) + B(x - 1) = 3
when x = 1, 3A = 3 (\to) a = 1
when x = -2, -3B = 3 (\to) B = -1
3 = 1 - 1
= (\frac{1}{x - 1} + \frac{1}{x + 2})
Users' Answers & CommentsTo solve -11 (\leq) 4 - 3x (\leq) 28
-11 (\leq) 4 - 3x also 4 -3x (\leq) 28
15 (\leq) -3x (\leq) 24 = 15 (\geq) 3x - 3x (\geq) -24
-5 (\geq) x, x (\geq) -8
i.e. x (\leq) 5
∴ -8 (\leq) x (\leq) 5
Users' Answers & Comments3 + 2 + (\frac{4}{3}) + (\frac{8}{9}) + (\frac{16}{17}) + .....
a = 3
r = (\frac{2}{3})
s (\alpha) = (\frac{a}{1 - r}) = (\frac{3}{1 - \frac{2}{3}})
= (\frac{3}{\frac{1}{3}})
= 3 x 3
= 9
Users' Answers & CommentsGiven that 2, 6, 12, 20...? the nth term = n2 + n
check: n = 1, u1 = 2
n = 2, u2 = 4 + 2 = 6
n = 3, u3 = 9 + 3 = 12
∴ n = 4, u4 = 16 + 4 = 20
Users' Answers & Commentsa = 2, d = 3 and n = 11
To find Sn/sub> = (\frac{n}{2}) [2a + (n - 1) (\delta)]
= (\frac{11}{2}) [2(2) + (11 - 1) 3]
= (\frac{11}{2})n [4 + 10(3)]
= (\frac{11}{2})(34)
= 11 x 17
= 187
</sub>
Users' Answers & Commentsm (\ast) n = mn + m + n
m (\ast) e = me + m + e, e (\ast) m = e
∴ me + m + e, m(e + 1)e - e = 0
e + 1 = 0
∴ e = -1
Users' Answers & Comments