1992 - JAMB Mathematics Past Questions and Answers - page 3

Q = \(\begin{vmatrix} x & 2 & z \ 3 & y & 2\ 0 & 3 & z \end{vmatrix}\) Where pT is the transpose P calculate /pT/ when x = 0, y = 1 and z = 2
p = (\begin{vmatrix} 0 & 3 & 0 \ 2 & 1 & 3\ 4 & 2 & 2 \end{vmatrix})
PT = (\begin{vmatrix}0 & 2 & 4 \ 2 & 1 & 3\ 0 & 3 & 2 \end{vmatrix})
/pT/ = (\begin{vmatrix}0 & 2 & 4 \ 3 & 1 & 3\ 0 & 3 & 2 \end{vmatrix})
= 0[2 - 6] - 2[6 - 0] + 4[9 - 0]
= 0 - 12 + 36 = 24
Users' Answers & CommentsQ = \(\begin{vmatrix} x & 2 & z \ 3 & y & 2\ 0 & 3 & z \end{vmatrix}\)
PQ is equivalent to
p = (\begin{vmatrix} 0 & 3 & 0 \ 2 & 1 & 3\ 4 & 2 & 2 \end{vmatrix})
Q = (\begin{vmatrix} 0 & 2 & 4 \ 3 & 1 & 2\ 0 & 3 & 2 \end{vmatrix}) = pT
pq = ppT
Users' Answers & Comments2x - 4y + 3 = 0
Required distance = (\frac{(2 \times 2) + 3(-4) + 3}{\sqrt{2^2} + (-4)^2})
= (\frac{4 - 12 + 3}{\sqrt{20}})
= (\frac{-5}{-2\sqrt{5}}}
= -{\frac{\sqrt{5}{2})
Users' Answers & CommentsEquation (5, 7) parallel to the line 7x + 5y = 12
5Y = -7x + 12
y = (\frac{-7x}{5}) + (\frac{12}{5})
Gradient = (\frac{-7}{5})
∴ Required equation = (\frac{y - 7}{x - 5}) = (\frac{-7}{5}) i.e. 5y - 35 = -7x + 35
5y + 7x = 70
Users' Answers & Commentssin (\theta) = (\frac{m}{n}) x x2
= n2 - m2
x = n2 - m2 cos (\theta)
(\frac{x}{n}) = (\frac{n^2 - m^2}{n})
cos (\theta) = (\frac{n^2 - m^2}{n})
= (\frac{(n + m)(n - m)}{n})
Users' Answers & Comments