1992 - JAMB Mathematics Past Questions and Answers - page 4
(\frac{dm}{dt}) = 4 - 0.6t
(\int)dm = (\int)(4 - 0.6t)dt
m = 4t - 0.3t2 + c, when t = 0, m = 2g
∴ c = 2
m = 4t - 0.3t2 + 2, when t = 5 minutes
m = 4(5) - 0.3(5)2 + 2 = 20 - 7.5
= 14.5
Users' Answers & Commentsf(x) = x3 - 12x + 11
(\frac{df(x)}{dx)}) = 3x2 - 12 = 0
∴ 3x2 - 12 = 0 (\to) x2m = 4
x = (\pm)2, f(+2) = 8 - 24 + 11 = -15
= f(-2) = (-8) + 24 + 11
= 35 - 8 = 27
∴ maximum value = 27
Users' Answers & Comments(\frac{dv}{dt}) = (\pi)(20 - t2)cm2S-1
(\int)dv = (\pi)(20 - t2)dt
V = (\pi) (\int)(20 - t2)dt
V = (\pi)(20 (\frac{t}{3}) - t3) + c
when c = 0, V = (20t - (\frac{t^3}{3}))
after t = 2 seconds
V = (\pi)(40 - (\frac{8}{3})
= (\pi)(\frac{120 - 8}{3})
= (\frac{112}{3})
= 37.33(\pi)
Users' Answers & Commentslet I = (\int^{\frac{\pi}{4}}_{\frac{\pi}{12}}) 2 cos 2x dx
= 2(sin 2x)(\frac{\pi}{4}) (sin 2x)(\frac{\pi}{4})(\frac{\pi}{12})
(2)(\frac{\pi}{12})
= -1 - (\frac{1}{2})
= (\frac{1}{2})
Users' Answers & Comments\(\begin{array}{c|c} Comoditiy & Quantity\ \hline F & 125\ G & 113\ H & 108\ K & 216 \ M & 68\end{array}\)
What angle will commodity H represent on a pie chart?
H will represent (\frac{108}{720}) x (\frac{360^o}{1}) = 54o
Users' Answers & CommentsIf the mean of the above frequency distribution is 5.2, find y
Mean (\bar{x}) = (\frac{\sum fx}{\sum f})
= (\frac{5.2}{1})
= (\frac{8 + 4y + 36 + 40}{4 + y + 6 + 5})
= (\frac{5.2}{1})
= (\frac{84 + 4y}{15 + y})
= 5.2(15 + y)
= 84 + 4y
= 5.2 x 15 + 5.2y
= 84 + 4y
= 78 + 5.2y
= 84 = 4y
= 5.2y - 4y
= 84 - 78
1.2y = 6
y = (\frac{6}{1.2})
= (\frac{60}{12})
= 5
Users' Answers & CommentsFind the mode and median respectively of the distribution above
(x) = (\frac{5 + 6 + 7}{3})
= (\frac{18}{3})
= 6
(\begin{array}{c|c} scores(X) & \text{d = (x - x) deviation} & (deviation)^2\hline 5 & 5 - 6 & 1\ 6 & 6 - 6 & 0 \ 7 & 7 - 6 & 1\ \hline & & 2\end{array})
S.D (\sqrt{\frac{\sum d^2}{n}}) where d = deviation = (x - x)
= (\sqrt{\frac{2}{3}})
Users' Answers & Comments