1992 - JAMB Mathematics Past Questions and Answers - page 4

31
Evaluate \(\frac{(x - 2)(x^2 + 3x - 2)}{x^2 - 4}\)
A
7
B
2
C
3
D
4
correct option: b
Users' Answers & Comments
32
If y = x sin x, Find \(\frac{d^2 y}{d^2 x}\)
A
2 cosx - x - x sinx
B
sinx + x cosx
C
sinx - x cosx
D
x sinx - 2 cosx
correct option: a
Users' Answers & Comments
33
Ice forms on a refrigerator ice-box at the rate of (4 - 06t)g per minute after t minutes. If initially there are 2g of ice in the box, find the mass of ice formed in 5 minutes
A
19.5
B
17.0
C
14.5
D
12.5
correct option: c

(\frac{dm}{dt}) = 4 - 0.6t

(\int)dm = (\int)(4 - 0.6t)dt

m = 4t - 0.3t2 + c, when t = 0, m = 2g

∴ c = 2

m = 4t - 0.3t2 + 2, when t = 5 minutes

m = 4(5) - 0.3(5)2 + 2 = 20 - 7.5

= 14.5

Users' Answers & Comments
34
Obtain a maximum value of the function f(x) x3 - 12x + 11
A
-5
B
-2
C
2
D
27
correct option: d

f(x) = x3 - 12x + 11

(\frac{df(x)}{dx)}) = 3x2 - 12 = 0

∴ 3x2 - 12 = 0 (\to) x2m = 4

x = (\pm)2, f(+2) = 8 - 24 + 11 = -15

= f(-2) = (-8) + 24 + 11

= 35 - 8 = 27

∴ maximum value = 27

Users' Answers & Comments
35
a student blows a balloon and its volume increases at a rate of \(\pi\)(20 - t2)cm3S-1 after t seconds. If the initial volume is 0 cm3, find the volume of the balloon after 2 seconds
A
37.00\(\pi\)
B
37.33\(\pi\)
C
40.00\(\pi\)
D
42.67\(\pi\)
correct option: b

(\frac{dv}{dt}) = (\pi)(20 - t2)cm2S-1

(\int)dv = (\pi)(20 - t2)dt

V = (\pi) (\int)(20 - t2)dt

V = (\pi)(20 (\frac{t}{3}) - t3) + c

when c = 0, V = (20t - (\frac{t^3}{3}))

after t = 2 seconds

V = (\pi)(40 - (\frac{8}{3})

= (\pi)(\frac{120 - 8}{3})

= (\frac{112}{3})

= 37.33(\pi)

Users' Answers & Comments
36
Evaluate the integral \(\int^{\frac{\pi}{4}}_{\frac{\pi}{12}}\) 2 cos 2x dx
A
-\(\frac{1}{2}\)
B
-1
C
\(\frac{1}{2}\)
D
1
correct option: c

let I = (\int^{\frac{\pi}{4}}_{\frac{\pi}{12}}) 2 cos 2x dx

= 2(sin 2x)(\frac{\pi}{4}) (sin 2x)(\frac{\pi}{4})(\frac{\pi}{12})

(2)(\frac{\pi}{12})

= -1 - (\frac{1}{2})

= (\frac{1}{2})

Users' Answers & Comments
37
A store keeper checked his stock of five commodities and arrived at the following statics
\(\begin{array}{c|c} Comoditiy & Quantity\ \hline F & 125\ G & 113\ H & 108\ K & 216 \ M & 68\end{array}\)
What angle will commodity H represent on a pie chart?
A
216o
B
108o
C
68o
D
54o
correct option: d

H will represent (\frac{108}{720}) x (\frac{360^o}{1}) = 54o

Users' Answers & Comments
38
\(\begin{array}{c|c} x & 2 & 4 & 6 & 8\ \hline f & 4 & y & 6 & 5 \end{array}\)
If the mean of the above frequency distribution is 5.2, find y
A
2, 1
B
1, 2
C
1, 5
D
5, 2
correct option: c

Mean (\bar{x}) = (\frac{\sum fx}{\sum f})

= (\frac{5.2}{1})

= (\frac{8 + 4y + 36 + 40}{4 + y + 6 + 5})

= (\frac{5.2}{1})

= (\frac{84 + 4y}{15 + y})

= 5.2(15 + y)

= 84 + 4y

= 5.2 x 15 + 5.2y

= 84 + 4y

= 78 + 5.2y

= 84 = 4y

= 5.2y - 4y

= 84 - 78

1.2y = 6

y = (\frac{6}{1.2})

= (\frac{60}{12})

= 5

Users' Answers & Comments
39
\(\begin{array}{c|c} \text{No. of children} & 0 & 1 & 2 & 3 & 4 & 5 & 6 \ \hline \text{No. of families} & 7 & 11 & 6 & 7 & 7 & 5 & 3 \end{array}\)
Find the mode and median respectively of the distribution above
A
2, 1
B
1, 2
C
1, 5
D
5, 2
correct option: b
Users' Answers & Comments
40
If the scores of 3 students in a test are 5, 6 and 7, find the standard deviation of their scores
A
\(\frac{2}{3}\)
B
\(\frac{2}{3}\sqrt{3}\)
C
\(\sqrt{\frac{2}{3}}\)
D
\(\sqrt{\frac{3}{2}}\)
correct option: c

(x) = (\frac{5 + 6 + 7}{3})

= (\frac{18}{3})

= 6

(\begin{array}{c|c} scores(X) & \text{d = (x - x) deviation} & (deviation)^2\hline 5 & 5 - 6 & 1\ 6 & 6 - 6 & 0 \ 7 & 7 - 6 & 1\ \hline & & 2\end{array})

S.D (\sqrt{\frac{\sum d^2}{n}}) where d = deviation = (x - x)

= (\sqrt{\frac{2}{3}})

Users' Answers & Comments
Please share this, thanks: