1992 - JAMB Mathematics Past Questions and Answers - page 1
To find n if 34n = 100112, convert both sides to base 10
= 3n + 4 = (1 x 24) + (0 x23) + (0 x 22) + (1 x 21) + 1 x 2o
= 3n + 4 = 16 + 0 + 0 + 2 + 1
3n + 4 = 19
3n = 15
n = 5
Users' Answers & Comments% error in Area = (\frac{\pi(5.01) - \pi(5)^2 \times 100%}{\pi(5)^2})
= (\frac{\pi 26.01 - 25 \times 100%}{\pi(25)})
= (\frac{0.01}{25}) x 1004
= 4.04
Users' Answers & Commentslogban = logana
x(a(\frac{1}{n}))x = a
a(\frac{x}{n}) = a1
(\frac{x}{n}) = 1
x = n
Users' Answers & Comments(\frac{4^{2x}}{4^{3x}}) = 2
42x - 3x = 2
4-x = 2
(22)-x
= 21
Equating coefficients: -2x = 1
x = -(\frac{1}{2})
Users' Answers & Comments(\frac{(1.25 \times 10^{-4}) \times (2.0 \times 10^{-1})}{(6.25 \times 10^5)}) = (\frac{1.25 \times 2}{6.25}) x 104 - 1 - 5
(\frac{2.50}{6.25}) x 10-2 = (\frac{250}{625}) x 10-2
0.4 x 10-2 = 4.0 x 10-3
Users' Answers & Comments5(\sqrt{18}) - 3(\sqrt{72}) + 4(\sqrt{50}) = 5(3(\sqrt{2})) - 3(6(\sqrt{2})) + 4(5(\sqrt{2}))
15(\sqrt{2}) - 18(\sqrt{2}) + 20(\sqrt{2}) = 35(\sqrt{2}) - 18(\sqrt{2})
= 17(\sqrt{2})
Users' Answers & Commentsx = 3 - (\sqrt{3})
x2 = (3 - (\sqrt{3}))2
= 9 + 3 - 6(\sqrt{34})
= 12 - 6(\sqrt{3})
= 6(2 - (\sqrt{3}))
∴ x2 + (\frac{36}{x^2}) = 6(2 - (\sqrt{3})) + (\frac{36}{6(2 - \sqrt{3})})
6(2 - (\sqrt{3})) + (\frac{6}{2 - \sqrt{3}}) = 6(- (\sqrt{3})) + (\frac{6(2 + \sqrt{3})}{(2 - \sqrt{3})(2 + \sqrt{3})})
= 6(2 - (\sqrt{3})) + (\frac{6(2 + \sqrt{3})}{4 - 3})
6(2 - (\sqrt{3})) + 6(2 + (\sqrt{3})) = 12 + 12
= 24
Users' Answers & Commentsx = (all prime factors of 44) and y = (all prime factors of 60)
∴ x = (2, 11), y = (2, 3, 5)
X ∪ Y = (2, 3, 5, 11),
X ∩ Y = (2)
Users' Answers & CommentsU = (1, 2, 3, 6, 7, 8, 9, 10)
E = (10, 4, 6, 8, 10)
F = (x : x2 = 26, x is odd)
∴ F = (\phi) Since x2 = 26 = 64
x = + which is even
∴ E ∩ F = (\phi) Since there are no common elements
Users' Answers & Comments