1994 - JAMB Mathematics Past Questions and Answers - page 1
2
The mean of twelve positive numbers is 3. When another number is added, the mean becomes 5. Find the thirteenth number
A
29
B
26
C
25
D
24
correct option: a
Users' Answers & Comments3
Evaluate \(\frac{1}{3} \div [\frac{5}{7}(\frac{9}{10} -1 + \frac{3}{4})]\)
A
\(\frac{28}{39}\)
B
\(\frac{13}{39}\)
C
\(\frac{39}{28}\)
D
\(\frac{84}{13}\)
correct option: a
\(\frac{1}{3} \div [\frac{5}{7}(\frac{9}{10} -1 + \frac{3}{4})]\)
\(\frac{1}{3} \div [\frac{5}{7}(\frac{9}{10} - \frac{10}{10} + \frac{3}{4})]\)
= \(\frac{1}{3} \div [\frac{5}{7}(\frac{-1}{10} + \frac{3}{4})]\)
= \(\frac{1}{3} \div [\frac{5}{7}(\frac{-2 + 15}{20})]\)
= \(\frac{1}{3} \div [\frac{5}{7} \times \frac{13}{20}]\)
\(\frac{1}{3} + [\frac{13}{28}]\) = \(\frac{1}{3} \times \frac{28}{13}\)
= \(\frac{28}{39}\)
Users' Answers & Comments\(\frac{1}{3} \div [\frac{5}{7}(\frac{9}{10} - \frac{10}{10} + \frac{3}{4})]\)
= \(\frac{1}{3} \div [\frac{5}{7}(\frac{-1}{10} + \frac{3}{4})]\)
= \(\frac{1}{3} \div [\frac{5}{7}(\frac{-2 + 15}{20})]\)
= \(\frac{1}{3} \div [\frac{5}{7} \times \frac{13}{20}]\)
\(\frac{1}{3} + [\frac{13}{28}]\) = \(\frac{1}{3} \times \frac{28}{13}\)
= \(\frac{28}{39}\)
4
Evaluate \(\frac{0.36 \times 5.4 \times 0.63}{4.2 \times 9.0 \times 2.4}\)
A
0.013
B
0.014
C
0.14
D
0.13
correct option: a
\(\frac{0.36 \times 5.4 \times 0.63}{4.2 \times 9.0 \times 2.4}\)
= \(\frac{36}{420} \times \frac{54}{90} \times \frac{63}{240}\)
= \(\frac{6}{70} \times \frac{18}{30} \times \frac{21}{80}\)
= \(\frac{27}{2000}\)
= 0.0135
\(\approx\) = 0.013
Users' Answers & Comments= \(\frac{36}{420} \times \frac{54}{90} \times \frac{63}{240}\)
= \(\frac{6}{70} \times \frac{18}{30} \times \frac{21}{80}\)
= \(\frac{27}{2000}\)
= 0.0135
\(\approx\) = 0.013
5
Evaluate \(\frac{log_5 (0.04)}{log_3 18 - log_3 2}\)
A
1
B
-1
C
\(\frac{2}{3}\)
D
-\(\frac{2}{3}\)
correct option: b
\(\frac{log_5 0.04}{log_3 18 - log_3 2}\)
= \(\frac{log_5 0.04}{log_3(\frac{18}{2})}\)
= \(\frac{log_5 0.04}{log_3 9}\)
= \(\frac{-2}{2}\)
= -1
Let log5 0.04 = x
5x = 0.04
x = \(\frac{4}{100}\) = 5-2
Let log3 9 = z
32 = 32
z = 3
Users' Answers & Comments= \(\frac{log_5 0.04}{log_3(\frac{18}{2})}\)
= \(\frac{log_5 0.04}{log_3 9}\)
= \(\frac{-2}{2}\)
= -1
Let log5 0.04 = x
5x = 0.04
x = \(\frac{4}{100}\) = 5-2
Let log3 9 = z
32 = 32
z = 3
6
Without using table, solve the equation 8x-2 = \(\frac{2}{25}\)
A
4
B
6
C
8
D
10
correct option: d
8x-2 = \(\frac{2}{25}\)
= 200x-2 = 2
= 100x-2 = 1
x-2 = \(\frac{1}{100}\)
x-2 = 10-2
x = 10
Users' Answers & Comments= 200x-2 = 2
= 100x-2 = 1
x-2 = \(\frac{1}{100}\)
x-2 = 10-2
x = 10
7
Simplify \(\sqrt{48}\) - \(\frac{9}{\sqrt{3}}\) + \(\sqrt{75}\)
A
5√3
B
6√3
C
8√3
D
18√3
correct option: b
\(\sqrt{48}\) - \(\frac{9}{\sqrt{3}}\) + \(\sqrt{75}\)
Rearrange = \(\sqrt{48}\) + \(\sqrt{75}\) - \(\frac{9}{\sqrt{3}}\)
= (√16 x √3) + (√25 x √3) - \(\frac{9}{\sqrt{3}}\)
=4√3 + 5√3 - \(\frac{9}{\sqrt{3}}\)
Rationalize \(\to\) 9√3 = \(\frac{9}{\sqrt{3}}\) x \(\frac{\sqrt{3}}{\sqrt{3}}\)
= \(\frac{9\sqrt{3}}{\sqrt{9}}\) - \(\frac{9\sqrt{3}}{\sqrt{3}}\)
= 3√3
Users' Answers & CommentsRearrange = \(\sqrt{48}\) + \(\sqrt{75}\) - \(\frac{9}{\sqrt{3}}\)
= (√16 x √3) + (√25 x √3) - \(\frac{9}{\sqrt{3}}\)
=4√3 + 5√3 - \(\frac{9}{\sqrt{3}}\)
Rationalize \(\to\) 9√3 = \(\frac{9}{\sqrt{3}}\) x \(\frac{\sqrt{3}}{\sqrt{3}}\)
= \(\frac{9\sqrt{3}}{\sqrt{9}}\) - \(\frac{9\sqrt{3}}{\sqrt{3}}\)
= 3√3
8
Given that √2 = 1.1414, find without using tables, the value of \(\frac{1}{\sqrt{2}}\)
A
0.141
B
0.301
C
0.667
D
0.707
correct option: d
\(\frac{1}{\sqrt{2}}\) = \(\frac{1}{\sqrt{2}}\) x \(\frac{\sqrt{2}}{\sqrt{2}}\)
= \(\frac{\sqrt{2}}{2}\)
= \(\frac{1.414}{2}\)
= 0.707
Users' Answers & Comments= \(\frac{\sqrt{2}}{2}\)
= \(\frac{1.414}{2}\)
= 0.707
9
Given that for sets A and B, in a universal set E, A \(\subseteq\) B then A \(\cap\)(A \(\cap\) B)1 is
A
A
B
\(\phi\)
C
B
D
E
correct option: b
A \(\subset\) B means A is contained in B i.e. A is a subset of B(A \(\cap\) B)1 = A1
A(A \(\cap\) B)1 = A \(\cap\) A1
The intersection of complement of a set P and P1 has no element
i.e. n(A \(\cap\) A1) = \(\phi\)
Users' Answers & CommentsA(A \(\cap\) B)1 = A \(\cap\) A1
The intersection of complement of a set P and P1 has no element
i.e. n(A \(\cap\) A1) = \(\phi\)
10
Simplify \(\frac{(2m - u)^2 - (m - 2u)^2}{5m^2 - 5u^2}\)
A
\(\frac{3}{5}\)
B
\(\frac{2}{5}\)
C
\(\frac{2m - u}{5m + u}\)
D
\(\frac{m - 2u}{m + 5u}\)
correct option: a
\(\frac{(2m - u)^2 - (m - 2u)^2}{5m^2 - 5u^2}\)
= \(\frac{2m - u + m - 2u)(2m - u - m + 2u)}{5(m + u)(m - u)}\)
= \(\frac{3(m - u)(m + u)}{5(m + u)(m - u)}\)
= \(\frac{3}{5}\)
Users' Answers & Comments= \(\frac{2m - u + m - 2u)(2m - u - m + 2u)}{5(m + u)(m - u)}\)
= \(\frac{3(m - u)(m + u)}{5(m + u)(m - u)}\)
= \(\frac{3}{5}\)