1994 - JAMB Mathematics Past Questions and Answers - page 1
(\frac{1}{3} \div [\frac{5}{7}(\frac{9}{10} -1 + \frac{3}{4})])
(\frac{1}{3} \div [\frac{5}{7}(\frac{9}{10} - \frac{10}{10} + \frac{3}{4})])
= (\frac{1}{3} \div [\frac{5}{7}(\frac{-1}{10} + \frac{3}{4})])
= (\frac{1}{3} \div [\frac{5}{7}(\frac{-2 + 15}{20})])
= (\frac{1}{3} \div [\frac{5}{7} \times \frac{13}{20}])
(\frac{1}{3} + [\frac{13}{28}]) = (\frac{1}{3} \times \frac{28}{13})
= (\frac{28}{39})
Users' Answers & Comments(\frac{0.36 \times 5.4 \times 0.63}{4.2 \times 9.0 \times 2.4})
= (\frac{36}{420} \times \frac{54}{90} \times \frac{63}{240})
= (\frac{6}{70} \times \frac{18}{30} \times \frac{21}{80})
= (\frac{27}{2000})
= 0.0135
(\approx) = 0.013
Users' Answers & Comments(\frac{log_5 0.04}{log_3 18 - log_3 2})
= (\frac{log_5 0.04}{log_3(\frac{18}{2})})
= (\frac{log_5 0.04}{log_3 9})
= (\frac{-2}{2})
= -1
Let log5 0.04 = x
5x = 0.04
x = (\frac{4}{100}) = 5-2
Let log3 9 = z
32 = 32
z = 3
Users' Answers & Comments8x-2 = (\frac{2}{25})
= 200x-2 = 2
= 100x-2 = 1
x-2 = (\frac{1}{100})
x-2 = 10-2
x = 10
Users' Answers & Comments(\sqrt{48}) - (\frac{9}{\sqrt{3}}) + (\sqrt{75})
Rearrange = (\sqrt{48}) + (\sqrt{75}) - (\frac{9}{\sqrt{3}})
= (√16 x √3) + (√25 x √3) - (\frac{9}{\sqrt{3}})
=4√3 + 5√3 - (\frac{9}{\sqrt{3}})
Rationalize (\to) 9√3 = (\frac{9}{\sqrt{3}}) x (\frac{\sqrt{3}}{\sqrt{3}})
= (\frac{9\sqrt{3}}{\sqrt{9}}) - (\frac{9\sqrt{3}}{\sqrt{3}})
= 3√3
Users' Answers & Comments(\frac{1}{\sqrt{2}}) = (\frac{1}{\sqrt{2}}) x (\frac{\sqrt{2}}{\sqrt{2}})
= (\frac{\sqrt{2}}{2})
= (\frac{1.414}{2})
= 0.707
Users' Answers & CommentsA (\subset) B means A is contained in B i.e. A is a subset of B(A (\cap) B)1 = A1
A(A (\cap) B)1 = A (\cap) A1
The intersection of complement of a set P and P1 has no element
i.e. n(A (\cap) A1) = (\phi)
Users' Answers & Comments(\frac{(2m - u)^2 - (m - 2u)^2}{5m^2 - 5u^2})
= (\frac{2m - u + m - 2u)(2m - u - m + 2u)}{5(m + u)(m - u)})
= (\frac{3(m - u)(m + u)}{5(m + u)(m - u)})
= (\frac{3}{5})
Users' Answers & Comments