1998 - JAMB Mathematics Past Questions and Answers - page 3
Estimate the mode of the above frequency distribution
(\begin{array}{c|c} \text{Class intervals} & F & \text{Class boundary}\ \hline 5 - 7 & 17 & 4.5 - 9.5\ 10 - 14 & 32 & 9.5 - 14.5\ 15 - 19 & 25 & 14.5 - 19.5\ 20 - 24 & 24 & 19.5 - 24.5 \end{array})
mode = 9 + (\frac{D_1}{D_2 + D_1}) x C
= 9.5 + (\frac{5(32 - 17)}{2(32) - 17 - 25})
= 9.5 + (\frac{75}{27})
= 12.27
(\approx) 2.3
Users' Answers & Commentsmean (x) = (\frac{\sum x}{N})
= k + k + 1 + k + 3
= (\frac{3k + 3}{3})
= k + 1
(\begin{array}{c|c} X & (X -X) & (X -X)^2\ \hline k & -1 & 1 \ k + 1 & 0 & 0\ k + 2 & 1 \ \hline & & 2\end{array})
Variance (52) = (\frac{\sum (x - x)^2}{N})
= (\frac{2}{3})
Users' Answers & Commentsmean (x) = (\frac{1 + x + 1 + 2x + 1}{3})
= (\frac{3x + 3}{3})
= 1 + x
(\begin{array}{c|c} X & (X -X) & (X -X)^2\ \hline 1 & -x & x^2 \ x + 1 & 0 & 0\2x + 1 & x & x^2\ \hline & & 2x^2\end{array})
S.D = (\sqrt{\frac{\sum(x - 7)^2}{\sum f}})
= (\sqrt{(6)}^2)
= (\frac{2x^2}{3})
= 2x2
= 18
x2 = 9
∴ x = (\pm) (\sqrt{9})
= (\pm)3
Users' Answers & CommentsNumber of red balls = 16,
Number of blue balls = 20
Let x represent the No of white balls to be added
∴ Total number of balls = 36 + x
2(36 + x) = 80
= 2x + 80 - 72
= 8
x = (\frac{8}{2})
= 4
Users' Answers & Commentsp(x) = (\frac{2}{5}) p(y) = (\frac{1}{3})
p(x or y) = p(x ∪ y)
= p(x) + p(y)
= (\frac{2}{5}) + (\frac{1}{3})
= (\frac{11}{5})
Users' Answers & Comments(\begin{vmatrix}& \hline 1 & 2 & 3 & 4\hline 1 & 1 & 2& 3 & 4\2 & 2& 4 & 6 & 8\ 3& 3& 6& 9 & 12\4 & 4 & 8 & 12& 16\end{vmatrix})
p (product of x, and y > 6) = (\frac{6}{16})
= (\frac{3}{8})
Users' Answers & Commentsy = 6 sin (2x - 25)o
(\frac{dy}{dx}) = -12 cos(2x - 25o)
(\frac{dy}{dx}) = 0
-12 cos x (2x - 25o) = 0
= cos(2x - 25o) = 0
= 2x - 25o = cos-1(0)
= 2x - 25o
= 90o
x = (\frac{115}{2})
Users' Answers & Comments

m = (\frac{y_2 - y_1}{x_2 - x_2} = \frac{3 - 0}{0 - 2} = \frac{-3}{2})
= (\frac{y - y_1}{x- x_1})
m = (\frac{y - 3}{x}) (\geq) (\frac{-3}{2})
2(y - 3) (\geq) - 3x = 2y - 6 (\geq) - 3x
= 2y + 3x (\leq) 6 ; x (\leq) 0, y (\leq) 0
Users' Answers & Comments
< PSR = (\frac{1}{2})(180o) = 90o (angle substended by a semi-circle)
∴ < TSR = 90o
< SRT = 90o - 30o = 60o
< PRS = 90o - 35o = 55o
< PRQ = 180 - (60o + 55o) = 180 - 115o = 65o
< SQR = 35o(angles in the same segment)
< QSR + < SRQ + < SQR = 180o
< QSR + 120o + 35o = 180o
< QSR + 155 = 180o
< QSR = 180o - 155o
= 25o
Users' Answers & Comments