1998 - JAMB Mathematics Past Questions and Answers - page 2
d2 = (y - y)2 + (x - x)2
5 = 4x2 + 1 = 25= 4x2 + 1
= 4x2 = 25 - 1= 24
x2 = (\frac{24}{4})
x = (\sqrt{6})
Users' Answers & Commentsy = 4x + 3
when x = 0, y = 3 (\to) (0, 3)
when y = 0, x = -(\frac{3}{4}) (\to) ((\frac{3}{4}), 0)
mid-point (\frac{0 + (-{\frac{3}{4}})}{2}), (\frac{3 + 0}{4})
-(\frac{3}{8}), (\frac{3}{2})
Users' Answers & Commentscos x + sin x (\frac{1}{cos x - sinx})
= (cosx + sinx)(cosx - sinx) = 1
= cos2x + sin2x = 1
cos2x - (1 - cos2x) = 1
= 2cos2x = 2
cos2x = 1
= cosx = (\pm)1 = x
= cos-1x ((\pm), 1)
= 0, (\pi) (\frac{3}{2}\pi), 2(\pi)
(possible solution)
Users' Answers & Comments(\frac{150}{Z}) = tan 60o,
Z = (\frac{150}{tan 60^o})
= (\frac{150}{3})
= 50(\sqrt{3})cm
(\frac{150}{X x Z}) = tan45o = 1
X + Z = 150
X = 150 - Z
= 150 - 50(\sqrt{3})
= 50( (\sqrt{3}) - (\sqrt{3}))m
Users' Answers & Commentsy = 243(4x + 5)-2, find (\frac{dy}{dx})
= -1944(4x + 5)-3
= 1944(9)-3
(\frac{dy}{dx}) when x = 1
= -(\frac{1944}{9^3})
= -(\frac{1944}{729})
= (\frac{-8}{3})
Users' Answers & Commentslet y = (\frac{x}{cosx}) = x sec x
y = u(x) v (x0
(\frac{dy}{dx}) = U(\frac{dy}{dx}) + V(\frac{du}{dx})
dy x [secx tanx] + secx
x = x secx tanx + secx
Users' Answers & Comments∫(^{\pi}_{2})(sec2 x - tan2x)dx
∫(^{\pi}{2}) dx = [X](^{\pi}{2})
= (\pi) - 2 + c
when c is an arbitrary constant of integration
Users' Answers & Commentsm = (\frac{dy}{dv}) = 6x - 5
∫dy = ∫(6x - 5)dx
y = 3x2 - 5x + C
when x = 2, y = 5
∴ 5 = 3(2)2 - 5(2) +C
C = 3
∴ y = 3x2 - 5x + 3
Users' Answers & Commentsmean(x) = (\frac{\sum x}{N})
= (\frac{48}{8})
= 5.875
re-arranging the numbers;
2, 3, 5, 6, 2, 7, 8, 9
median = (\frac{6 + 7}{2})
= (\frac{1}{2})
= 6.5
m + 2n = 5.875 + (6.5)2
= 13 + 5.875
= 18.875
= (\approx) = 19
Users' Answers & Comments