2007 - JAMB Mathematics Past Questions and Answers - page 8
If the line 3y = 4x – 1 is parallel t[ line qy = x + 3
Implies gradient of 3y = 4x – 1
Y = 4/3x - 1/3
∴Gradient = 4/3
Gradient of line qy = x + 3
Y = 1/qx + 3/q
∴ Gradient = 1/q
4/3 = 1/q
4q = 3
Q = 3/4
Users' Answers & Commentsx = 30o (alternate ∠s b/c PQ//Sr)
Y = 50o (vertical opposite ∠s)
r = 30o (alternate ∠s b/c PQ//SR)
But = y + q + t = 180o (∠s on a straight line)
50 + q + 30 = 180
q + 80 = 180
q = 180 -80
q = 100o
Users' Answers & CommentsVolume of bowl (\frac{2}{3}\pi r^2\
718\frac{2}{3}=\frac{2}{3}\pi r^2\
\frac{2156}{3}=\frac{2}{3} \times \frac{22}{7} \times r^3
∴r^3 = \frac{2156 \times 3 \times 7}{3 \times 2 \times 22}\
r^3 = 343\
r = \sqrt[3]{343}\
r= 7.0cm)
Users' Answers & CommentsIf the point of intersection is (1, -2), it implies that x = 1 and y = -2 when the two equation are solved simultaneously.
∴ substitute x = 1 and y = -2 in any of the equations
2y - k x + 2 = 0
2(-2) - k(1) + 2 = 0
-4 - k + 2 = 0
-4 + 2 = k
-2 = k
Users' Answers & Comments(Tan 30 = \frac{h}{40}\
\frac{1}{\sqrt{3}}=\frac{h}{40}\
h\sqrt{3}=40\
h = \frac{40}{\sqrt{3}}\
h = \frac{40}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}\
h = \frac{40\sqrt{3}}{3})
Users' Answers & CommentsLocus of point P equidistant from y - 5 = 0 and y - 3 = 0 is y = 4 i.e y - 4 = 0
Users' Answers & Comments(1-k+2) / 2 = - k and -4 + k + 1 = k
3-k = -2k and -3 + k = 2k
K = -3 and k = -3
Users' Answers & Comments(\frac{tan 60^o - tan 30^o}{tan 60^o + tan 30^o}= \frac{\sqrt{3}-\frac{1}{\sqrt{3}}}{\sqrt{3}+\frac{1}{\sqrt{3}}}\
=\left(\frac{\sqrt{3}\sqrt{3}-1}{\sqrt{3}}\right)\div \left(\frac{\sqrt{3}\sqrt{3}+1}{\sqrt{3}}\right)\
=\frac{(3-1)}{(3+1)}\
=\frac{2}{4}=\frac{1}{2})
Users' Answers & Comments