2007 - JAMB Mathematics Past Questions and Answers - page 9
Area of a square = x * x
144 = x2
√144 = x
12 = x
But d2 = 122 x 122
= 144 + 144
= 288
d = √288
= √144 x 2
= 12√2
Users' Answers & Commentsx = (1, 4, 9, 16, 25, 36}
y = {1, 3, 5, 7, 9, 11, 13, 15}
X ∩ y = {1, 9}
Users' Answers & CommentsIf y = (1 + x)2, find (\frac{dy}{dx})
y = (1 + x)2
(\frac{dy}{dx}) = 2(1 + x)
= 2 + 2x
Users' Answers & CommentsIf y = x cosx, find (\frac{dy}{dx}).
Using product rule (\frac{dy}{dx}) = cosx - x sinx
Users' Answers & CommentsIntegrate (\frac{x^2 - \sqrt{x}}{x}) with respect to x
∫(\frac{x^2 - \sqrt{x}}{x})dx = ∫((\frac{x^2}{x} - \frac {\sqrt{x}}{x}))dx
= ∫(x - x(\frac{1}{2}))dx
= (\frac{x^2}{2}) - (\frac{x^{\frac{1}{2}}}{\frac{1}{2}}) + k
= (\frac{x^2}{2}) - 2(\sqrt{x}) + k
Users' Answers & CommentsDetermine the value of (∫^{\frac{\pi}{2}}_{0}) (-2 cosx)dx
(∫^{\frac{\pi}{2}}_{0}) (-2 cosx)dx = -2 sin x(∫^{\frac{\pi}{2}} _{0})
= 2(sin 0 - sin(\frac{\pi}{2}))
= 2(0 - 1)
= -2
Users' Answers & Commentsf(x) = 2x3 - x2 - 4x + 4
f(x) = 6x2 - 2x - 4 at turning point, f1(x) = 0
6x2 - 2x - 4 = 0, 3x2 - x - 2 = 0, 3x2 - 3x + 2x - 2 = 0
(3x + 2)(x - 1) = 0, x = -(\frac{2}{3}) or 1
f11(x) = 12x - 2,
when x = (\frac{2}{3}), f11(x) = 12(-(\frac{2}{3})) - 2 = -10 < 0
(\to) f(x) is maximum @ x = -(\frac{2}{3})
when x = 1, f11(x) = 12(1)- 2 = 10 > 0
(\to) f(x) is maximum @ x = 1
Users' Answers & CommentsVolume of hemisphere = (\frac{2}{3}\pi r^3)
(\frac{2}{3}\pi r^3) = 718(\frac{2}{3})
(\frac{2}{3}) x (\frac{22}{7} r^3)
= (\frac{2156}{3})
r3 = (\frac{2156}{3}) x (\frac{3}{2}) x (\frac{7}{22})
r3 = 49 x 7
r = 3(\sqrt{343})
= 7cm3
Users' Answers & Commentstan 30o = (\frac{h}{40m})
h = 40 tan 30o
= 40 x (\frac{1}{\sqrt{30}})m
by rationalizing
h = (\frac{40\sqrt{3}}{3})m
Users' Answers & Comments