2009 - JAMB Mathematics Past Questions and Answers - page 4
x2 + 33 = 52
x2 + 9 = 25
x2 = 25 – 9
x2 = 16
x = √ 16
= 4 cm
∴ The locus is a circle of radius 4 cm with the center 0
Users' Answers & Comments2 |
3 |
A(4,2) and B(1,r), AB = 3 units
3 = √ (x2- x1)2 + (y2-y1)2
3 = √ (4-1)2 + (2-r)2
3 = √ 32 + (2-r)2
3 = √ 9 + 4 – 4r + r2
3 = √ r2 - 4r + 13
9 = r2 - 4r + 13 By squaring both sides
r2 - 4r + 4 = 0
(r-2)(r-2) = 0
r = 2
Users' Answers & Comments(Sin 45 - cos 30\
\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{2}\
=\frac{\sqrt{2}-\sqrt{3}}{2})
Users' Answers & CommentsTan 60 = | 300 |
x |
x = | 300 |
Tan 60 |
x = | 300 |
√3 |
x = (300/√3) x (√3/√3)
x = | 300√3 |
.....3 |
x = 100√3
x = (2+3t)(5t-4)
Let u = 2+3t ∴du/dt = 3
and v = 5t-4 ∴dv/dt = 5
dx/dt = Vdu/dt + Udv/dt
= (5t-4)3 + (2+3t)5
= 15t - 12 + 10 + 15t
= 30t - 2
= 30x4/5 - 2
= 24 - 2
= 22
Users' Answers & Commentsx(4-x) = 4x-x2
dy/dx = 4-2x
As dy/dx = 0
4-2x = 0
2x = 4
x = 2
Users' Answers & CommentsS = t3 - t2 - t + 5
ds/dt = 3t2 - 2t - 1
As ds = 0
3t2 - 2t - 1 = 0
(3t+1)(t-1) = 0
∴ t = 1 or -1/3
At min pt t = -1/3
S = t3 - t2 - t + 5 put t = -1/3
= (-1/3)3 - (-1/3)2 - (-1/3) + 5
= -1/27 - 1/9 + 1/3 + 5
= 140 / 27
= 5.2
Users' Answers & Comments∫sec2θ dθ = ∫ 1/cos2 dθ
∫(cos)-2 dθ,
let u = cos θ
∴∫u-2 = 1/u + c
∫cos θ = sin θ + c
∫sec-2θ = 1/u sin θ + c
= (sinθ / cosθ) + c
= Tan θ + c
Users' Answers & Comments