2014 - JAMB Mathematics Past Questions and Answers - page 1
1
Find the value of 1101112 + 101002
A
11010112
B
10010012
C
10010112
D
10011112
correct option: c
Users' Answers & Comments2
A woman bought a grinder for N60,000. She sold it at a loss of 15%. How much did she sell it?
A
N53,000
B
N52,000
C
N51,000
D
N50,000
correct option: c
SP = Nx
CP = N60,000
Percentage loss = 15%
Using percentage loss...
\(\frac{CP - SP}{CP} = \text{100%}\)
\(\text{15%} = \frac{60000 - x}{60000} \times \text{100%}\)
\(\text{15%} \times 60000 = (60000 - x)\text{100%}\)
\(60000 - x = \frac{\text{15%} \times 60000}{\text{100%}}\)
60000 - x = 3 x 3000
60000 -x = 9000
x = 60000 - 9000
x = N51,000
Users' Answers & CommentsCP = N60,000
Percentage loss = 15%
Using percentage loss...
\(\frac{CP - SP}{CP} = \text{100%}\)
\(\text{15%} = \frac{60000 - x}{60000} \times \text{100%}\)
\(\text{15%} \times 60000 = (60000 - x)\text{100%}\)
\(60000 - x = \frac{\text{15%} \times 60000}{\text{100%}}\)
60000 - x = 3 x 3000
60000 -x = 9000
x = 60000 - 9000
x = N51,000
3
Express the product of 0.00043 and 2000 in standard form.
A
8.6 x 10-3
B
8.3 x 10-2
C
8.6 x 10-1
D
8.6 x 10
correct option: c
0.00043 x 2000
= 43 x 10-5 x 2 x 103
= 43 x 2 x 10-5+3
= 86 x 10-2
= 8.6 x 101 x 10-2
= 8.6 x 10-1
Users' Answers & Comments= 43 x 10-5 x 2 x 103
= 43 x 2 x 10-5+3
= 86 x 10-2
= 8.6 x 101 x 10-2
= 8.6 x 10-1
4
A man donates 10% of his monthly net earnings to his church. If it amounts to N4,500, what is his net monthly income?
A
N40,500
B
N45,000
C
N52,500
D
N62,000
correct option: b
Let;
M = Man monthly net earnings
Then;
\(\text{N4500} = \frac{\text{10%}}{\text{100%}} \times M \)
\(M = \frac{\text{N4500} \times \text{100%}}{\text{10%}} \)
M = N45,000
Users' Answers & CommentsM = Man monthly net earnings
Then;
\(\text{N4500} = \frac{\text{10%}}{\text{100%}} \times M \)
\(M = \frac{\text{N4500} \times \text{100%}}{\text{10%}} \)
M = N45,000
5
If log7.5 = 0.8751, evaluate 2 log75 + log750
A
6.6252
B
6.6253
C
66.252
D
66.253
correct option: b
If log 7.5 = 0.8751
Then 2log75 + log750
= 2(1.8751) + 2.8751
= 3.7502 + 2.8751
= 6.6253
Users' Answers & CommentsThen 2log75 + log750
= 2(1.8751) + 2.8751
= 3.7502 + 2.8751
= 6.6253
6
Solve for x in 8x-2 = 2/25
A
4
B
6
C
8
D
10
correct option: d
8x-2 = 2/25
x-2 = 2/25 x 1/8
x-2 = 2/200
x-2 = 1/100
1/x2 = 1/100
x2 = 100
x = 10
Users' Answers & Commentsx-2 = 2/25 x 1/8
x-2 = 2/200
x-2 = 1/100
1/x2 = 1/100
x2 = 100
x = 10
7
Simplify \(\frac{2\sqrt{2} - \sqrt{3}}{\sqrt{2} + \sqrt{3}}\)
A
3\(\sqrt{6} - 7\)
B
3\(\sqrt{6} - 7\)
C
3\(\sqrt{6} - 1\)
D
3\(\sqrt{6} + 1\)
correct option: a
\(= \frac{2\sqrt{2} - \sqrt{3}}{\sqrt{2} + \sqrt{3}} \times \frac{\sqrt{2} - \sqrt{3}}{\sqrt{2} + \sqrt{3}}\)
\(= \frac{2\sqrt{2}(\sqrt{2}) + (2\sqrt{2})(-\sqrt{3})-\sqrt{3}(\sqrt{2})-\sqrt{3}(-\sqrt{3})}{(\sqrt{2})^2-(\sqrt{3})^2}\)
\(= \frac{2 \times 2 - 2\sqrt{6} - \sqrt{6} + 3}{2 - 3}\)
\(= \frac{4 - 3\sqrt{6} + 3}{-1}\)
\(= \frac{7 - 3\sqrt{6}}{-1}\)
\(= \frac{7}{-1} - \frac{3\sqrt{6}}{-1}\)
\(= -7 + 3\sqrt{6}\)
\(= 3\sqrt{6}-7\)
Users' Answers & Comments\(= \frac{2\sqrt{2}(\sqrt{2}) + (2\sqrt{2})(-\sqrt{3})-\sqrt{3}(\sqrt{2})-\sqrt{3}(-\sqrt{3})}{(\sqrt{2})^2-(\sqrt{3})^2}\)
\(= \frac{2 \times 2 - 2\sqrt{6} - \sqrt{6} + 3}{2 - 3}\)
\(= \frac{4 - 3\sqrt{6} + 3}{-1}\)
\(= \frac{7 - 3\sqrt{6}}{-1}\)
\(= \frac{7}{-1} - \frac{3\sqrt{6}}{-1}\)
\(= -7 + 3\sqrt{6}\)
\(= 3\sqrt{6}-7\)
8
Evaluate Log28 + Log216 - Log24
A
3
B
4
C
5
D
6
correct option: c
\( = log_2 \frac{8 \times 16}{4}\)
\( = log_2 32\)
\( = log_2 2^5\)
\( = 5log_2 2\)
\( = 5 \times 1\)
\( = 5 \)
Users' Answers & Comments\( = log_2 32\)
\( = log_2 2^5\)
\( = 5log_2 2\)
\( = 5 \times 1\)
\( = 5 \)
9
If P = {1,2,3,4,5} and P \(\cup\) Q = {1,2,3,4,5,6,7}, list the elements in Q
A
{6}
B
{7}
C
{6,7}
D
{5,6}
10
If gt2 - k - w = 0, make g the subject of the formula
A
\(\frac{k + w}{t^2}\)
B
\(\frac{k - w}{t^2}\)
C
\(\frac{k + w}{t}\)
D
\(\frac{k - w}{t}\)