2014 - JAMB Mathematics Past Questions and Answers - page 3

21
\(\text{If }\begin{vmatrix}
-x & 12 \\ -1 & 4
\end{vmatrix} = - 12, \text{ find x}\)
A
-6
B
-2
C
3
D
6
correct option: d
\(\begin{vmatrix}
-x & 12 \\ -1 & 4
\end{vmatrix} = - 12\)

-4x - (-1)12 = -12

-4x + 12 = -12

-4x = -12 - 12

-4x = - 24

x = 6
Users' Answers & Comments
22
Find the value of \(\begin{vmatrix}
0 & 3 & 2 \\ 1 & 7 & 8 \\ 0 & 5 & 4
\end{vmatrix}\)
A
12
B
10
C
-1
D
-2
correct option: d
\(0 \begin{vmatrix}
7 & 8 \\ 5 & 4\end{vmatrix}-3 \begin{vmatrix}
1 & 8 \\ 0 & 4\end{vmatrix}+2 \begin{vmatrix}
1 & 7 \\ 0 & 5\end{vmatrix}\)

= 0(28 - 40) - 3(4 - 0) + 2(5 - 0)

= 0(-12) - 3(4) + 2(5)

= 0 - 12 + 10

= -2
Users' Answers & Comments
23
How many sides has a regular polygon whose interior angle is 135o
A
12
B
10
C
9
D
8
correct option: d
If each interior angle of the polygon is 135o, then each exterior angle is 180o - 135o = 45o. Hence, number of sides =

\(\frac{360^o}{\text{one exterior angle}}\)

\(\frac{360^o}{45^o}\)

= 8
Users' Answers & Comments
24
A cylindrical tank has a capacity of 6160m3. What is the depth of the tank if the radius of its base is 28cm?
A
8.0m
B
7.5m
C
5.0m
D
2.5m
correct option: d
Using \(V = \pi r^2 h\)

6160 = 22/7 x 28 x 28 x h

\(h = \frac{6160}{22 \times 4 \times 28} \)

\(h = 2.5m \)
Users' Answers & Comments
25
The locus of a dog tethered to a pole with a rope of 4m is a
A
circle with diameter 4m
B
circle with radius 4m
C
semi-circle with diameter 4m
D
semi-circle with radius 4m
correct option: b
Users' Answers & Comments
26
Find the mid point of S(-5, 4) and T(-3, -2)
A
-4, 2
B
4, -2
C
-4, 1
D
4, -1
correct option: c
Mid point of S(-5, 4) and T(-3, -2) is

\([\frac{1}{2}(-5 + -3), \frac{1}{2}(4 + 2)]\)

\([\frac{1}{2}(x_1 + x_2), \frac{1}{2}(y_1 + y_2)]\)

\([\frac{1}{2}(-8), \frac{1}{2}(2)]\)

\([-4, 1]\)
Users' Answers & Comments
27
The gradient of a line joining (x,4) and (1,2) is \(\frac{1}{2}\). Find the value of x
A
5
B
3
C
-3
D
-5
correct option: a
\(\text{Gradient m} = \frac{y_2 - y_1}{x_2 - x_1}\)

\(\frac{1}{2} = \frac{2 - 4}{1 - x}\)

1 - x = 2(2 - 4)

1 - x = 4 - 8

1 - x = -4

-x = -4 - 1

x = 5
Users' Answers & Comments
28
Calculate the mid point of the line segment y - 4x + 3 = 0, which lies between the x-axis and y-axis.
A
\(\begin{pmatrix} 3 & -3 \ 8 & 2 \end{pmatrix}\)
B
\(\begin{pmatrix} 3 & 3 \ 8 & 2 \end{pmatrix}\)
C
\(\begin{pmatrix} -2 & 2 \ 2 & 2 \end{pmatrix}\)
D
\(\begin{pmatrix} -2 & 3 \ 3 & 2 \end{pmatrix}\)
correct option: a
y - 4x + 3 = 0

When y = 0, 0 - 4x + 3 = 0

Then -4x = -3

x = 3/4

So the line cuts the x-axis at point (3/4, 0).

When x = 0, y - 4(0) + 3 = 0

Then y + 3 = 0

y = -3

So the line cuts the y-axis at the point (0, 3)

Hence the midpoint of the line y - 4x + 3 = 0, which lies between the x-axis and the y-axis is;

\([\frac{1}{2}(x_1 + x_2), \frac{1}{2}(y_1 + y_2)]\)

\([\frac{1}{2}(\frac{3}{4} + 0), \frac{1}{2}(0 + -3)]\)

\([\frac{1}{2}(\frac{3}{4}), \frac{1}{2}(-3)]\)

\([\frac{3}{8}, \frac{-3}{2}]\)
Users' Answers & Comments
29
Find the equation of the straight line through (-2, 3) and perpendicular to 4x + 3y - 5 = 0
A
3x - 4y + 18 = 0
B
3x + 2y - 18 = 0
C
4x + 5y + 3 = 0
D
5x - 2y - 11 = 0
correct option: a
4x + 3y - 5 = 0 (given)

The equation of the line perpendicular to the given line takes the form 3x - 4y = k

Thus, substitution x = -2 and y = 3 in 3x - 4y = k gives;

3(-2) - 4(3) = k

-6 - 12 = k

k = -18

Hence the required equation is 3x - 4y = -18

3x - 4y + 18 = 0
Users' Answers & Comments
30
If \(\sin\theta = \frac{12}{13}\), find the value of \(1 + \cos\theta\)
A
\(\frac{25}{13}\)
B
\(\frac{18}{13}\)
C
\(\frac{8}{13}\)
D
\(\frac{5}{13}\)
correct option: b
Users' Answers & Comments
Please share this, thanks: