2014 - JAMB Mathematics Past Questions and Answers - page 4
If y = 4x3 - 2x2 + x, then;
(\frac{\delta y}{\delta x}) = 3(4x2) - 2(2x) + 1
= 12x2 - 4x + 1
Users' Answers & Commentsy = cos 3x
Let u = 3x so that y = cos u
Now, (\frac{\delta y}{\delta x} = 3),
(\frac{\delta y}{\delta x} = -sin u)
By the chain rule,
(\frac{\delta y}{\delta x} = \frac{\delta y}{\delta u} \times \frac{\delta u}{\delta x})
(\frac{\delta y}{\delta x} = (-\sin u) (3))
(\frac{\delta y}{\delta x} = -3 \sin u)
(\frac{\delta y}{\delta x} = -3 \sin 3x)
Users' Answers & Commentsy = x2 - 2x - 3,
Then (\frac{\delta y}{\delta x} = 2x - 2)
But at minimum point,(\frac{\delta y}{\delta x} = 0),
Which means 2x - 2 = 0
2x = 2
x = 1.
Hence the minimum value of y = x2 - 2x - 3 is;
ymin = (1)2 - 2(1) - 3
ymin = 1 - 2 - 3
ymin = -4
Users' Answers & Comments(\int \sin 2x dx = \frac{1}{2} (-\cos 2x) + k)
(- \frac{1}{2} \cos 2x + k)
Users' Answers & Comments(\int (2x + 3)^{\frac{1}{2}} \delta x)
let u = 2x + 3, (\frac{\delta y}{\delta x} = 2)
(\delta x = \frac{\delta u}{2})
Now (\int (2x + 3)^{\frac{1}{2}} \delta x = \int u^{\frac{1}{2}}.{\frac{\delta x}{2}})
( = \frac{1}{2} \int u^{\frac{1}{2}} \delta u)
( = \frac{1}{2} u^{\frac{3}{2}} \times \frac{2}{3} + k)
( = \frac{1}{3} u^{\frac{3}{2}} + k)
( = \frac{1}{3} (2x + 3)^{\frac{3}{2}} + k)
Users' Answers & CommentsMean x = (\frac{\sum x}{n})
= [(2 - t) + (4 + t) + (3 - 2t) + (2 + t) + (t - 1) (\div)] 5
= [11 - 1 + 3t - 3t] (\div) 5
= 10 (\div) 5
= 2
Users' Answers & CommentsValues & 0 & 1 & 2 & 3 & 4 \\ \hline
Frequency & 1 & 2 & 2 & 1 & 9
\end{array}\)
Find the mode of the distribution above
First arrange the numbers in order of magnitude;
1,2,3,3,4,5,5,5,5,6,7,8,9,9,10
Hence the median = 5
Users' Answers & CommentsMean x = (\frac{\sum x}{n})
( = \frac{5 + 4 + 3 + 2 + 1}{5})
( = \frac{15}{5})
= 3
(\begin{array}{c|c}
x & d = x - 3 & d^2 \
\hline
5 & 2 & 4 \
4 & 1 & 1 \
3 & 0 & 0 \
2 & -1 & 1 \
1 & -2 & 4 \
\hline
& & \sum d^2 + 10
\end{array})
Hence, standard deviation;
( = \sqrt{\frac{\sum d^2}{n}} = \sqrt{\frac{10}{5}})
( = \sqrt{2})
Users' Answers & CommentsA team of 2 girls can be selected from 7 girls in (^7C_3)
( = \frac{7!}{(7 - 3)! 3!})
( = \frac{7!}{4! 3!} ways)
Users' Answers & Comments