2014 - JAMB Mathematics Past Questions and Answers - page 4
31
If y = 4x3 - 2x2 + x, find \(\frac{\delta y}{\delta x}\)
A
8x2 - 2x + 1
B
8x2 - 4x + 1
C
12x2 - 2x + 1
D
12x2 - 4x + 1
correct option: d
If y = 4x3 - 2x2 + x, then;
\(\frac{\delta y}{\delta x}\) = 3(4x2) - 2(2x) + 1
= 12x2 - 4x + 1
Users' Answers & Comments\(\frac{\delta y}{\delta x}\) = 3(4x2) - 2(2x) + 1
= 12x2 - 4x + 1
32
If y = cos 3x, find \(\frac{\delta y}{\delta x}\)
A
\(\frac{1}{3} \sin 3x\)
B
\(-\frac{1}{3} \sin 3x\)
C
3 sin 3x
D
-3 sin 3x
correct option: d
y = cos 3x
Let u = 3x so that y = cos u
Now, \(\frac{\delta y}{\delta x} = 3\),
\(\frac{\delta y}{\delta x} = -sin u\)
By the chain rule,
\(\frac{\delta y}{\delta x} = \frac{\delta y}{\delta u} \times \frac{\delta u}{\delta x}\)
\(\frac{\delta y}{\delta x} = (-\sin u) (3)\)
\(\frac{\delta y}{\delta x} = -3 \sin u\)
\(\frac{\delta y}{\delta x} = -3 \sin 3x\)
Users' Answers & CommentsLet u = 3x so that y = cos u
Now, \(\frac{\delta y}{\delta x} = 3\),
\(\frac{\delta y}{\delta x} = -sin u\)
By the chain rule,
\(\frac{\delta y}{\delta x} = \frac{\delta y}{\delta u} \times \frac{\delta u}{\delta x}\)
\(\frac{\delta y}{\delta x} = (-\sin u) (3)\)
\(\frac{\delta y}{\delta x} = -3 \sin u\)
\(\frac{\delta y}{\delta x} = -3 \sin 3x\)
33
Find the minimum value of y = x2 - 2x - 3
A
4
B
1
C
-1
D
-4
correct option: d
y = x2 - 2x - 3,
Then \(\frac{\delta y}{\delta x} = 2x - 2\)
But at minimum point,\(\frac{\delta y}{\delta x} = 0\),
Which means 2x - 2 = 0
2x = 2
x = 1.
Hence the minimum value of y = x2 - 2x - 3 is;
ymin = (1)2 - 2(1) - 3
ymin = 1 - 2 - 3
ymin = -4
Users' Answers & CommentsThen \(\frac{\delta y}{\delta x} = 2x - 2\)
But at minimum point,\(\frac{\delta y}{\delta x} = 0\),
Which means 2x - 2 = 0
2x = 2
x = 1.
Hence the minimum value of y = x2 - 2x - 3 is;
ymin = (1)2 - 2(1) - 3
ymin = 1 - 2 - 3
ymin = -4
34
Evaluate \(\int \sin 2x dx\)
A
cos 2x + k
B
\(\frac{1}{2}\)cos 2x + k
C
\(-\frac{1}{2}\)cos 2x + k
D
-cos 2x + k
correct option: c
\(\int \sin 2x dx = \frac{1}{2} (-\cos 2x) + k\)
\(- \frac{1}{2} \cos 2x + k\)
Users' Answers & Comments\(- \frac{1}{2} \cos 2x + k\)
35
Evaluate \(\int (2x + 3)^{\frac{1}{2}} \delta x\)
A
\(\frac{1}{12} (2x + 3)^6 + k\)
B
\(\frac{1}{3} (2x + 3)^{\frac{1}{2}} + k\)
C
\(\frac{1}{3} (2x + 3)^{\frac{3}{2}} + k\)
D
\(\frac{1}{12} (2x + 3)^{\frac{3}{4}} + k\)
correct option: c
\(\int (2x + 3)^{\frac{1}{2}} \delta x\)
let u = 2x + 3, \(\frac{\delta y}{\delta x} = 2\)
\(\delta x = \frac{\delta u}{2}\)
Now \(\int (2x + 3)^{\frac{1}{2}} \delta x = \int u^{\frac{1}{2}}.{\frac{\delta x}{2}}\)
\( = \frac{1}{2} \int u^{\frac{1}{2}} \delta u\)
\( = \frac{1}{2} u^{\frac{3}{2}} \times \frac{2}{3} + k\)
\( = \frac{1}{3} u^{\frac{3}{2}} + k\)
\( = \frac{1}{3} (2x + 3)^{\frac{3}{2}} + k\)
Users' Answers & Commentslet u = 2x + 3, \(\frac{\delta y}{\delta x} = 2\)
\(\delta x = \frac{\delta u}{2}\)
Now \(\int (2x + 3)^{\frac{1}{2}} \delta x = \int u^{\frac{1}{2}}.{\frac{\delta x}{2}}\)
\( = \frac{1}{2} \int u^{\frac{1}{2}} \delta u\)
\( = \frac{1}{2} u^{\frac{3}{2}} \times \frac{2}{3} + k\)
\( = \frac{1}{3} u^{\frac{3}{2}} + k\)
\( = \frac{1}{3} (2x + 3)^{\frac{3}{2}} + k\)
36
The mean of 2 - 4, 4 + t, 3 - 2t and t - 1 is
A
t
B
-t
C
2
D
-2
correct option: c
Mean x = \(\frac{\sum x}{n}\)
= [(2 - t) + (4 + t) + (3 - 2t) + (2 + t) + (t - 1) \(\div\)] 5
= [11 - 1 + 3t - 3t] \(\div\) 5
= 10 \(\div\) 5
= 2
Users' Answers & Comments= [(2 - t) + (4 + t) + (3 - 2t) + (2 + t) + (t - 1) \(\div\)] 5
= [11 - 1 + 3t - 3t] \(\div\) 5
= 10 \(\div\) 5
= 2
37
\(\begin{array}{c|c}
Values & 0 & 1 & 2 & 3 & 4 \\ \hline
Frequency & 1 & 2 & 2 & 1 & 9
\end{array}\)
Find the mode of the distribution above
Values & 0 & 1 & 2 & 3 & 4 \\ \hline
Frequency & 1 & 2 & 2 & 1 & 9
\end{array}\)
Find the mode of the distribution above
A
1
B
2
C
3
D
4
correct option: d
Users' Answers & Comments38
Find the median of 5,9,1,10,3,8,9,2,4,5,5,5,7,3 and 6
A
6
B
5
C
4
D
3
correct option: b
First arrange the numbers in order of magnitude;
1,2,3,3,4,5,5,5,5,6,7,8,9,9,10
Hence the median = 5
Users' Answers & Comments1,2,3,3,4,5,5,5,5,6,7,8,9,9,10
Hence the median = 5
39
Find the standard deviation of 5, 4, 3, 2, 1
A
\(\sqrt{2}\)
B
\(\sqrt{3}\)
C
\(\sqrt{6}\)
D
\(\sqrt{10}\)
correct option: a
Mean x = \(\frac{\sum x}{n}\)
\( = \frac{5 + 4 + 3 + 2 + 1}{5}\)
\( = \frac{15}{5}\)
= 3
\(\begin{array}{c|c}
x & d = x - 3 & d^2 \\ \hline
5 & 2 & 4 \\ 4 & 1 & 1 \\ 3 & 0 & 0 \\ 2 & -1 & 1 \\ 1 & -2 & 4 \\ \hline
& & \sum d^2 + 10
\end{array}\)
Hence, standard deviation;
\( = \sqrt{\frac{\sum d^2}{n}} = \sqrt{\frac{10}{5}}\)
\( = \sqrt{2}\)
Users' Answers & Comments\( = \frac{5 + 4 + 3 + 2 + 1}{5}\)
\( = \frac{15}{5}\)
= 3
\(\begin{array}{c|c}
x & d = x - 3 & d^2 \\ \hline
5 & 2 & 4 \\ 4 & 1 & 1 \\ 3 & 0 & 0 \\ 2 & -1 & 1 \\ 1 & -2 & 4 \\ \hline
& & \sum d^2 + 10
\end{array}\)
Hence, standard deviation;
\( = \sqrt{\frac{\sum d^2}{n}} = \sqrt{\frac{10}{5}}\)
\( = \sqrt{2}\)
40
In how many ways can a team of 3 girls be selected from 7 girls?
A
\(\frac{7!}{3!}\)
B
\(\frac{7!}{4!}\)
C
\(\frac{7!}{3!4!}\)
D
\(\frac{7!}{2!5!}\)
correct option: c
A team of 2 girls can be selected from 7 girls in \(^7C_3\)
\( = \frac{7!}{(7 - 3)! 3!}\)
\( = \frac{7!}{4! 3!} ways\)
Users' Answers & Comments\( = \frac{7!}{(7 - 3)! 3!}\)
\( = \frac{7!}{4! 3!} ways\)