2017 - JAMB Mathematics Past Questions and Answers - page 5
41
The operation * on the set R of real number is defined by x * y = 3x + 2y − 1, find 3* − 1
A
9
B
- 9
C
6
D
- 6
correct option: c
x * y is an operation on 3x + 2y − 1
Find 3A − 1
x = 3, y = −1
3 * − 1 on 3x + 2y − 1
3(3) + 2(−1) −1
= 9 − 2 − 1
= 6
Users' Answers & CommentsFind 3A − 1
x = 3, y = −1
3 * − 1 on 3x + 2y − 1
3(3) + 2(−1) −1
= 9 − 2 − 1
= 6
42
Find the gradient of the line joining the points (3, 2) and (1, 4)
A
3/2
B
2/1
C
-1
D
3/2
correct option: c
Gradient of line joining points (3, 2), (1, 4)
Gradient = \(\frac{\text{Change in Y}}{\text{Change in X}}\)
= \(\frac{y_2 - Y_1}{x_2 - x_1}\)\)
(X1, Y1) = (3, 2)
(X2, Y2) = (1, 4)
Gradient = \(\frac{4 − 2}{1 + 3}\)
= \(\frac{2}{-2}\)
= −1
Users' Answers & CommentsGradient = \(\frac{\text{Change in Y}}{\text{Change in X}}\)
= \(\frac{y_2 - Y_1}{x_2 - x_1}\)\)
(X1, Y1) = (3, 2)
(X2, Y2) = (1, 4)
Gradient = \(\frac{4 − 2}{1 + 3}\)
= \(\frac{2}{-2}\)
= −1
43
Simplify (3√64a3)\(^{−1}\)
A
4a
B
\(\frac{1}{8a}\)
C
8a
D
\(\frac{1}{4a}\)
44
If \(\frac{2 \sqrt{3} - \sqrt{2}}{\sqrt{3} + 2 \sqrt{2}}\) = m + n √ 6,
find the values of m and n respectively
find the values of m and n respectively
A
1, − 2
B
− 2, n = 1
C
\(\frac{-2}{5}\), 1
D
\(\frac{2}{3}\)
correct option: b
\(\frac{2 \sqrt{3} - \sqrt{2}}{\sqrt{3} + 2 \sqrt{2}}\)= m + n√6
\(\frac{2 \sqrt{3} - \sqrt{2}}{\sqrt{3} + 2 \sqrt{2}}\) x \(\frac{\sqrt{3} - 2 \sqrt{2}}{\sqrt{3} - \sqrt{2}}\)
\(\frac{2 \sqrt{3} (\sqrt{3} - 2 \sqrt{2}) - \sqrt{2}(\sqrt{3} - 2 \sqrt{2})}{\sqrt{3}(\sqrt{3} - 2 \sqrt{2}) + 2 \sqrt{2}(\sqrt{3} - 2 \sqrt{2})}\)
\(\frac{2 \times 3 - 4\sqrt{6} - 6 + 2 \times 2}{3 - 2 \sqrt{6} + 2 \sqrt{6} - 4 \times 2}\)
= \(\frac{6 - 4 \sqrt{6} - \sqrt{6} + 4}{3 - 8}\)
= \(\frac{0 - 4 \sqrt{6} - 6}{5}\)
= \(\frac{10 - 5 \sqrt{6}}{5}\)
= − 2 + √6
∴ m + n\(\sqrt{6}\) = − 2 + √6
m = − 2, n = 1
Users' Answers & Comments\(\frac{2 \sqrt{3} - \sqrt{2}}{\sqrt{3} + 2 \sqrt{2}}\) x \(\frac{\sqrt{3} - 2 \sqrt{2}}{\sqrt{3} - \sqrt{2}}\)
\(\frac{2 \sqrt{3} (\sqrt{3} - 2 \sqrt{2}) - \sqrt{2}(\sqrt{3} - 2 \sqrt{2})}{\sqrt{3}(\sqrt{3} - 2 \sqrt{2}) + 2 \sqrt{2}(\sqrt{3} - 2 \sqrt{2})}\)
\(\frac{2 \times 3 - 4\sqrt{6} - 6 + 2 \times 2}{3 - 2 \sqrt{6} + 2 \sqrt{6} - 4 \times 2}\)
= \(\frac{6 - 4 \sqrt{6} - \sqrt{6} + 4}{3 - 8}\)
= \(\frac{0 - 4 \sqrt{6} - 6}{5}\)
= \(\frac{10 - 5 \sqrt{6}}{5}\)
= − 2 + √6
∴ m + n\(\sqrt{6}\) = − 2 + √6
m = − 2, n = 1
45
If α and β are the roots of the equation 3x2 + bx − 2 = 0. Find the value of \(\frac{1}{\alpha}\) + \(\frac{1}{\beta}\)
A
\(\frac{-5}{3}\)
B
\(\frac{-2}{3}\)
C
\(\frac{1}{2}\)
D
\(\frac{5}{2}\)
correct option: d
\(\frac{1}{\alpha}\) + \(\frac{1}{\beta}\) = \(\frac{\beta -\alpha}{\alpha \beta}\)
3x2 + 5x + 5x − 2 = 0.
Sum of root = α + β
Product of root = αβ
x2 + \(\frac{5x}{3}\) − \(\frac{2}{3}\) = 0
αβ = − \(\frac{-2}{3}\)
α + β = \(\frac{5}{3}\)
∴ \(\frac{\alpha + \beta}{\alpha \beta}\) = − \(\frac{\frac{5}{3}}{\frac{2}{3}}}\)
= − \(\frac{2}{3}\) × \(\frac{3}{3}\)
= \(\frac{5}{2}\)
Users' Answers & Comments3x2 + 5x + 5x − 2 = 0.
Sum of root = α + β
Product of root = αβ
x2 + \(\frac{5x}{3}\) − \(\frac{2}{3}\) = 0
αβ = − \(\frac{-2}{3}\)
α + β = \(\frac{5}{3}\)
∴ \(\frac{\alpha + \beta}{\alpha \beta}\) = − \(\frac{\frac{5}{3}}{\frac{2}{3}}}\)
= − \(\frac{2}{3}\) × \(\frac{3}{3}\)
= \(\frac{5}{2}\)
46
Find the range of the following set of numbers 0.4, −0.4, 0.3, 0.47, −0.53, 0.2 and −0.2
A
1.03
B
0.07
C
0.03
D
1.0
correct option: d
0.4, −0.4, 0.3, 0.47, −0.53, 0.2, −0.2
Range is the difference between the highest and lowest value
i.e Highest − Lowest
− 0.53, −0.4, −0.2, 0.2, 0.3, 0.4, 0.47
0.47 is the highest
− 0.53 is the lowest
∴ = 0.47 − (− 0.53)
∴0.47 + 0.53
= 1.0
Users' Answers & CommentsRange is the difference between the highest and lowest value
i.e Highest − Lowest
− 0.53, −0.4, −0.2, 0.2, 0.3, 0.4, 0.47
0.47 is the highest
− 0.53 is the lowest
∴ = 0.47 − (− 0.53)
∴0.47 + 0.53
= 1.0
47
Evaluate 1 − (\(\frac{1}{5}\) + 1\(\frac{2}{3}\)) + (5 + 1\(\frac{2}{3}\))
A
4
B
3
C
2\(\frac{2}{3}\)
D
3 \(\frac{2}{3}\)
correct option: d
1 − (\(\frac{1}{5}\) + 1\(\frac{2}{3}\)) + (5 + 1\(\frac{2}{3}\))
1 − (\(\frac{1}{5}\) × \(\frac{5}{3}\)) + (5 + \(\frac{5}{3}\))
1 − \(\frac{1}{3}\) + \(\frac{20}{3}\)
= \(\frac{22}{3}\)
Users' Answers & Comments1 − (\(\frac{1}{5}\) × \(\frac{5}{3}\)) + (5 + \(\frac{5}{3}\))
1 − \(\frac{1}{3}\) + \(\frac{20}{3}\)
= \(\frac{22}{3}\)
48
What is the product of 2x2 − x + 1 and 3 − 2x
A
4x3 − 8x2 + 5x + 3
B
−4x3 + 8x2 − 5x + 3
C
−4x3 − 8x2 + 5x + 3
D
4x3 + 8x2 − 5x + 3
correct option: b
(2x2 - x + 1) × (3 - 2x);
3(2x2 - x + 1) - 2x (2x2 - x + 1)
6x2 - 3x + 3 - 4x3 + 2x2 - 2x
-4x3 + 8x2 -5x + 3
Users' Answers & Comments3(2x2 - x + 1) - 2x (2x2 - x + 1)
6x2 - 3x + 3 - 4x3 + 2x2 - 2x
-4x3 + 8x2 -5x + 3