Courses » SS2 » SS2 Mathematics » Mathematics Exam Topics » Linear Inequality in One Variable - Questions and Answers

Linear Inequality in One Variable - SS2 Mathematics Past Questions and Answers - page 1

1

Solve the inequalities below:

\(\frac{x}{2} - 2 \geq \frac{2x}{5} + \frac{1}{4}\) 

A
\(x \geq \frac{45}{2}\)
B
\(x \leq \frac{45}{2}\)
C
\(x > \frac{45}{2}\)
D
\(x < \frac{45}{2}\)
correct option: a

Multiply each by the LCM of the denominators \(2,\ 5,\ 4 = 20\)

\(10x - 40 \geq 8x + 5\)

\[10x - 8x \geq 40 + 5\]

\[2x \geq 45\]

\(x \geq \frac{45}{2}\)

Users' Answers & Comments
2

Solve the inequalities below:

\(5(x + 1) \leq 4x + 1\)

A
\(x \leq - 4\)
B
\(x \geq - 4\)
C
\(x < - 4\)
D
\(x > - 4\)
correct option: a

\[5(x + 1) \leq 4x + 1\]

\[5x + 5 \leq 4x + 1\]

\[5x - 4x \leq 1 - 5\]

\(x \leq - 4\)

Users' Answers & Comments
3

\(\frac{x - 1}{2} - \frac{x}{3} \nless - \frac{1}{2}\ (Hint:\ \nless is\ \geq )\)

\[\frac{x - 1}{2} - \frac{x}{3} \nless - \frac{1}{2}\]

\[\frac{x - 1}{2} - \frac{x}{3} \geq - \frac{1}{2}\]

\[3(x - 1) - 2x \geq - 3\]

\[3x - 3 - 2x \geq - 3\]

\[x - 3 \geq - 3\]

\[x \geq - 3 + 3\]

\[x \geq 0\]

Users' Answers & Comments
4

\(x \leq 4x + 15\)

\[x \leq 4x + 15\]

\[x - 4x \leq 15\]

\[- 3x \leq 15\]

\[x \geq \frac{15}{- 3}\]

\[x \geq - 5\]

Users' Answers & Comments
5

\(\frac{3x - 1}{x + 2} > 2\)

\[\frac{3x - 1}{x + 2} - 2 > 0\]

\[3x - 1 - (x + 2) > 0\]

\[3x - 1 - x - 2 > 0\]

\[2x - 3 > 0\]

\[2x > 3\]

\[x > \frac{3}{2}\]

Users' Answers & Comments
Recommended: SS2 Mathematics Lessons
Please share this, thanks: