| \[Score\] |
\[f\] |
\[cf\] |
\[X\] |
\[Xf\] |
\[\overline{X}\] |
\[X - \overline{X} = d\] |
\[d^{2}\] |
\[fd^{2}\] |
\[|d\text{|}\] |
\[f|d|\] |
| \[50 - 54\] |
\[3\] |
\[3\] |
\[52\] |
156 |
\[69\] |
\[- 17\] |
\[289\] |
\[867\] |
\[17\] |
\[51\] |
| \[55 - 59\] |
\[5\] |
\[8\] |
\[57\] |
\[286\] |
\[69\] |
\[- 12\] |
\[144\] |
\[720\] |
\[12\] |
\[60\] |
| \[60 - 64\] |
\[8\] |
\[16\] |
\[62\] |
\[496\] |
\[69\] |
\[- 7\] |
\[49\] |
\[392\] |
\[7\] |
\[56\] |
| \[65 - 69\] |
\[10\] |
\[26\] |
\[67\] |
\[670\] |
\[69\] |
\[- 2\] |
\[4\] |
\[40\] |
\[2\] |
\[20\] |
| \[70 - 74\] |
\[7\] |
\[33\] |
\[72\] |
\[504\] |
\[69\] |
\[3\] |
\[9\] |
\[63\] |
\[3\] |
\[21\] |
| \[75 - 79\] |
\[6\] |
\[39\] |
\[77\] |
\[462\] |
\[69\] |
\[8\] |
\[64\] |
\[384\] |
\[8\] |
\[48\] |
| \[80 - 84\] |
\[3\] |
\[42\] |
\[82\] |
\[246\] |
\[69\] |
\[13\] |
\[169\] |
\[507\] |
\[13\] |
\[39\] |
| \[85 - 89\] |
\[2\] |
\[44\] |
\[87\] |
\[174\] |
\[69\] |
\[18\] |
\[324\] |
\[648\] |
\[18\] |
\[36\] |
| \[90 - 94\] |
\[1\] |
\[45\] |
\[92\] |
\[92\] |
\[69\] |
\[23\] |
\[529\] |
\[529\] |
\[23\] |
\[23\] |
-
\(Mean,\ \overline{X} = \frac{\sum_{}^{}{Xf}}{\sum_{}^{}f} = \ \frac{3,086}{45} = 68.58 \approx 69\)
-
\(\frac{n + 1}{2} = \ \frac{45 + 1}{2} = \frac{46}{2} = 23\)
This means the median is 23rd item in the fourth class (\(65 - 69\)), so we take the calculate the median for this grouped data as \(l_{m} + {(\frac{\frac{\sum_{}^{}f}{2} - {cf}_{cb}}{f_{m}})}^{c}\)
\[l_{m} = 64.5\]
\[\sum_{}^{}f = 45\]
\[{cf}_{cb}\ = 16\]
\[f_{m} = 10\]
\[c = 5\]
\[median = l_{m} + (\frac{\frac{\sum_{}^{}f}{2} - {cf}_{cb}}{f_{m}})c\]
\[= 64.5 + \left( \frac{\frac{45}{2} - 16}{10} \right) \times 5 = \ 67.75\]
-
The mode is the fourth class \(65 - 69\) with frequency of \(10\)
-
mean absolute deviation, \(MD = \frac{\sum_{}^{}{f|d|}}{\sum_{}^{}f} = \frac{354}{45} = 7.87\)
-
\(standard\ deviation,\ \sigma = \ \sqrt{\frac{\sum_{}^{}{f{(X - \overline{X})}^{2}}}{\sum_{}^{}f}} = \sqrt{\frac{4150}{45}} = \sqrt{92.22} = 9.603\)
-
\(variance,\ \sigma^{2} = {9.603}^{2} = 92.22\)