Statistics - SS2 Mathematics Past Questions and Answers - page 1

1

In a set of data: \(45,\ 67,\ 89,\ 95,\ 76,\ 12\). What is the mean of the data?

A

64

B

67

C

65

D

61

correct option: a

\(mean = \ \frac{45 + 67 + 89 + 95 + 76 + 12}{6} = \frac{384}{6} = 64\)

Users' Answers & Comments
2

In a set of data: \(45,\ 67,\ 89,\ 95,\ 76,\ 12\), What is the median of the data?

A

71.5

B

76

C

67

D

75.5

correct option: a

\(median\ \left\{ 12,\ 45,\ 67,\ 76,\ 89,\ 85 \right\} = \ \frac{67 + 76}{2} = \frac{143}{2} = 71.5\)

Users' Answers & Comments
3

In a set of data: \(45,\ 67,\ 89,\ 95,\ 76,\ 12\), What is the range of the data?

A

71.5

B

73

C

67

D

73.5

correct option: b

Range = 85 - 12 = 73

Users' Answers & Comments
4
  1. The data below is the scores of a set of students in a microbiology class. Solve for the relevant measures of central tendency and dispersion.

\[Score\] \[Frequency\]
\[50 - 54\] \[3\]
\[55 - 59\] \[5\]
\[60 - 64\] \[8\]
\[65 - 69\] \[10\]
\[70 - 74\] \[7\]
\[75 - 79\] \[6\]
\[80 - 84\] \[3\]
\[85 - 89\] \[2\]
\[90 - 94\] \[1\]
\[Score\] \[f\] \[cf\] \[X\] \[Xf\] \[\overline{X}\] \[X - \overline{X} = d\] \[d^{2}\] \[fd^{2}\] \[|d\text{|}\] \[f|d|\]
\[50 - 54\] \[3\] \[3\] \[52\] 156 \[69\] \[- 17\] \[289\] \[867\] \[17\] \[51\]
\[55 - 59\] \[5\] \[8\] \[57\] \[286\] \[69\] \[- 12\] \[144\] \[720\] \[12\] \[60\]
\[60 - 64\] \[8\] \[16\] \[62\] \[496\] \[69\] \[- 7\] \[49\] \[392\] \[7\] \[56\]
\[65 - 69\] \[10\] \[26\] \[67\] \[670\] \[69\] \[- 2\] \[4\] \[40\] \[2\] \[20\]
\[70 - 74\] \[7\] \[33\] \[72\] \[504\] \[69\] \[3\] \[9\] \[63\] \[3\] \[21\]
\[75 - 79\] \[6\] \[39\] \[77\] \[462\] \[69\] \[8\] \[64\] \[384\] \[8\] \[48\]
\[80 - 84\] \[3\] \[42\] \[82\] \[246\] \[69\] \[13\] \[169\] \[507\] \[13\] \[39\]
\[85 - 89\] \[2\] \[44\] \[87\] \[174\] \[69\] \[18\] \[324\] \[648\] \[18\] \[36\]
\[90 - 94\] \[1\] \[45\] \[92\] \[92\] \[69\] \[23\] \[529\] \[529\] \[23\] \[23\]
  1. \(Mean,\ \overline{X} = \frac{\sum_{}^{}{Xf}}{\sum_{}^{}f} = \ \frac{3,086}{45} = 68.58 \approx 69\)

  2. \(\frac{n + 1}{2} = \ \frac{45 + 1}{2} = \frac{46}{2} = 23\)

This means the median is 23rd item in the fourth class (\(65 - 69\)), so we take the calculate the median for this grouped data as \(l_{m} + {(\frac{\frac{\sum_{}^{}f}{2} - {cf}_{cb}}{f_{m}})}^{c}\)

\[l_{m} = 64.5\]

\[\sum_{}^{}f = 45\]

\[{cf}_{cb}\ = 16\]

\[f_{m} = 10\]

\[c = 5\]

\[median = l_{m} + (\frac{\frac{\sum_{}^{}f}{2} - {cf}_{cb}}{f_{m}})c\]

\[= 64.5 + \left( \frac{\frac{45}{2} - 16}{10} \right) \times 5 = \ 67.75\]

  1. The mode is the fourth class \(65 - 69\) with frequency of \(10\)

  2. mean absolute deviation, \(MD = \frac{\sum_{}^{}{f|d|}}{\sum_{}^{}f} = \frac{354}{45} = 7.87\)

  3. \(standard\ deviation,\ \sigma = \ \sqrt{\frac{\sum_{}^{}{f{(X - \overline{X})}^{2}}}{\sum_{}^{}f}} = \sqrt{\frac{4150}{45}} = \sqrt{92.22} = 9.603\)

  4. \(variance,\ \sigma^{2} = {9.603}^{2} = 92.22\)

Users' Answers & Comments
Recommended: SS2 Mathematics Lessons
Please share this, thanks: