Integral Calculus (Integration) - SS3 Mathematics Past Questions and Answers - page 1Change Class & SubjectChange Topic/Year1Evaluate ∫1x2dxAlnx2+CBlnx22x+CC12x+CD2x2+C Answer & Commentscorrect option: bLet u=x2 ∴dudx=2x ∴dx=du2x Substituting we have, ∫1x2 dx= ∫1u.du2x =12x(lnu)+C, substitute u =12xlnx2+C ∴∫1x2dx=lnx22x+C Users' Answers & Comments2Evaluate ∫1x2dxAlnx2+CBlnx22x+CC12x+CD2x2+C Answer & Commentscorrect option: bLet u=x2 ∴dudx=2x ∴dx=du2x Substituting we have, ∫1x2 dx= ∫1u.du2x =12x(lnu)+C, substitute u =12xlnx2+C ∴∫1x2dx=lnx22x+C Users' Answers & Comments3Find the integral of ∫(x−3)(x+3)dxAx2+9x−27B 3x2+11x−29C 2x[x2+9x−27]D 3x[x3+9x2−27]Answer & Commentscorrect option: c∫u dv=uv− ∫v du u=(x−3), dudx=1 dvdx=(x+3), v=x22+3x ∫(x−3)(x+3)dx=(x−3)(x22+3x)−∫(x22+3x)(1) =(x−3)(x2+6x)−∫x2+6x =x3+3x2−18x−x33+6x22 =x3+3x2−18x−x33+3x2 =x3+6x2−18x−x33 =3x3+18x2−54x−x3 =2x3+18x2−54x =2x[x2+9x−27] Users' Answers & Comments4Evaluate ∫122x3dx A11B7.5C9D15Answer & Commentscorrect option: b∫122x3dx= [2x44]12=[x42]12=[(2)42]−[(1)42]=162−12=152=7.5Users' Answers & Comments5Find the definite integral of ∫02ex2dxAnswer & CommentsFirst integrate ∫ex2dx, let u=x2, dudx=2(1)−x(0)4=24=12, dx=4 du ∫eu4 du=4∫eudu=4 eu=4ex2 ∫02ex2dx= [4ex2]02=[4e22]−[4e02]=4e−4(1)=4e−4=4(e−1) Users' Answers & Comments6Find the integral of ∫xsinx dx by method of integration by partsAnswer & Comments∫u dv=uv− ∫v du u=x, du=1 dv=sinx, v=−cosx ∫xsinx dx=−xcosx− ∫−cosx =−xcosx+∫cosx =−xcosx+sinx =sinx−xcosx Users' Answers & CommentsPage 1 of 11