1991 - WAEC Mathematics Past Questions and Answers - page 1
The population of a village is 5846. Express this number to three significant figures
Simplify: log6 + log2 - log12
log 6 + log 2 - log 12
= \(\log (\frac{6 \times 2}{12})\)
= \(\log 1\)
= 0
Find the number whose logarithm to base 10 is 2.6025
For the log to be 2.6025, there must be three digits before the decimal point.
Simplify: \((\frac{1}{4})^{-1\frac{1}{2}}\)
\((\frac{1}{4})^{-1\frac{1}{2}}\)
= \((\frac{1}{4})^{-\frac{3}{2}}\)
= \((\sqrt{\frac{1}{4}})^{-3}\)
= \((\frac{1}{2})^{-3}\)
= \(2^3\)
= 8
For what value of y is the expression \(\frac{y + 2}{y^{2} - 3y - 10}\) undefined?
\(\frac{y + 2}{y^2 - 3y - 10}\)
\(y^2 - 3y - 10 = 0 \implies y^2 - 5y + 2y - 10 = 0\)
\(y(y - 5) + 2(y - 5) = 0\)
\((y - 5)(y + 2) = 0\)
\(\frac{y + 2}{(y - 5)(y + 2)} = \frac{1}{y - 5}\)
\(\therefore\) At y = 5, the expression \(\frac{y + 2}{y^2 - 3y - 10}\) is undefined.
Factorize 3a\(^2\) - 11a + 6
3a\(^2\) - 11a + 6
3a\(^2\) - 9a - 2a + 6
3a(a - 3) - 2(a - 3)
= (3a - 2)(a - 3)
Solve the equation: 3a + 10 = a\(^2\)
3a + 10 = a\(^2\)
a\(^2\) - 3a - 10 = 0
a\(^2\) - 5a + 2a - 10 = 0
a(a - 5) + 2(a - 5) = 0
(a - 5)(a + 2) = 0
a = 5 or a = -2.
Simplify \((\frac{3}{x} + \frac{15}{2y}) \div \frac{6}{xy}\)
\((\frac{3}{x} - \frac{15}{2y}) \div \frac{6}{xy}\)
= \((\frac{6y - 15x}{2xy}) \div \frac{6}{xy}\)
= \(\frac{6y - 15x}{2xy} \times \frac{xy}{6}\)
= \(\frac{3(2y - 5x)}{2xy} \times \frac{xy}{6}\)
= \(\frac{2y - 5x}{4}\)
(20 - 22) = 22n-2 - 2n