2000 - WAEC Mathematics Past Questions and Answers - page 3

21

The probabilities that Kodjo and Adoga pass an examination are \(\frac{3}{4}\) and \(\frac{3}{5}\) respectively. Find the probability of both boys failing the examination

A
\(\frac{1}{10}\)
B
\(\frac{3}{10}\)
C
\(\frac{9}{20}\)
D
\(\frac{2}{3}\)
correct option: a

P(Kodjo passing) = \(\frac{3}{4}\); P(Adoga passing) = \(\frac{3}{5}\)

P(Kodjo failing) = \(\frac{1}{4}\); P(Adoga failing) = \(\frac{2}{5}\)

P(both fail) = \(\frac{1}{4} \times \frac{2}{5}\)

= \(\frac{1}{10}\)

Users' Answers & Comments
22

Which of the following statement is not true about a rectangle? I.Each diagonal cuts the rectangle into two congruent triangles. II. A rectangle has four lines of symmetry III. The diagonals intersect at right angles

A
I and II only
B
III only
C
II only
D
II and III only
correct option: b
Users' Answers & Comments
23

In the diagram, PQRS is a circle center O. PQR is a diameter and ∠PRQ = 40°. Calculate ∠QSR.

A
30o
B
40o
C
45o
D
50o
correct option: d

< Q = < R (OQ = OR = radii)

< QOR = 180° - 2(40°) = 100°

< QSR = < RPQ = \(\frac{1}{2}\) < QOR

= \(\frac{100}{2} = 50°\)

Users' Answers & Comments
24

Each side of a regular convex polygon subtends an angle of 30° at its center. Calculate each interior angle

A
75o
B
150o
C
160o
D
68o
correct option: b

Interior angle = 2(75°)

= 150°

Users' Answers & Comments
25

If the interior angles of hexagon are 107°, 2x°, 150°, 95°, (2x-15)° and 123°, find x.

A
\(57\frac{1}{2}^{\circ}\)
B
\(65^{\circ}\)
C
\(106^{\circ}\)
D
\(120^{\circ}\)
correct option: b

Sum of interior angle in a hexagon = (6 - 2) x 180°

= 720°

\(\therefore\) 107° + 2x° + 150° + 95° + (2x - 15)° + 123° = 720°

460 + 4x = 720 \(\implies\) 4x = 720 - 460

4x = 260° \(\implies\) x = 65°

Users' Answers & Comments
26

In the diagram, POS and ROT are straight lines, OPQR is a parallelogram. |OS| = |OT| and ∠OST = 50°. Calculate ∠OPQ.

A
160o
B
140o
C
120o
D
100o
correct option: d

< T = < S = 50° (OS = OT)

< SOT = 180° - 2(50°) = 80°

< ROP = 80° (vertically opposite angle)

\(\therefore\) < OPQ = 180° - 80° = 100° (adjacent angles)

Users' Answers & Comments
27

Given that \(x = -\frac{1}{2}and \hspace{1mm} y = 4 \hspace{1mm} evaluate \hspace{1mm} 3x^2y+xy^2\)

A
-5
B
-1
C
4
D
11
correct option: a

\(x = -\frac{1}{2}, y = 4\
3x^2y + xy^2\
3\left[-\frac{1}{2}\right]^2 \times 4 \times + \left(\frac{-1}{2}\right)(4)^2\
3\times \frac{1}{4} \times 4 -\frac{1}{2} \times 16\
3-8 = -5\)

Users' Answers & Comments
28
Given that \(27^{(1+x)}=9,)\ find x
A
-3
B
\(\frac{-1}{3}\)
C
\(\frac{5}{3}\)
D
2
correct option: b
\(27^{(1+x)}=9\
3^{3(1+x)}=3^2\
3(1+x)=2\
3+3x = 2\
3x = -1
x = \frac{-1}{3}\)
Users' Answers & Comments
29

If x varies inversely as y and \(x = \frac{2}{3}\) when y = 9, find the value of y when \(x=\frac{3}{4}\)

A
\(\frac{1}{18}\)
B
\(\frac{8}{81}\)
C
\(\frac{9}{2}\)
D
8
correct option: d

\(x \propto \frac{1}{y}\)

\(x = \frac{k}{y}\)

\(\frac{2}{3} = \frac{k}{9}\)

\(3k = 18 \implies k = 6\)

\(x = \frac{6}{y}\)

When y = \(\frac{3}{4}\),

x = \(\frac{6}{\frac{3}{4}}\)

= \(\frac{6 \times 4}{3}\)

= 8

Users' Answers & Comments
30

Given that (2x + 7) is a factor of \(2x^2 + 3x - 14\), find the other factor

A
x + 2
B
2 - x
C
x - 2
D
x + 1
correct option: c

\(2x^2 + 3x - 14\)

\(2x^2 + 7x - 4x - 14\)

\(x(2x + 7) - 2(2x + 7)\)

= \((x - 2)(2x + 7)\)

The other factor = (x - 2).

Users' Answers & Comments
Please share this, thanks: