2008 - WAEC Mathematics Past Questions and Answers - page 1
x% of 240 = 12
(\frac{x}{100} \times 240 = 12)
x = (\frac{12 \times 100}{240})
x = 5
(\frac{(3.2)^2 - (4.8)^2}{3.2 + 1.8} = \frac{(3.2 - 4.8)(3.2 + 4.8)}{(3.2 + 4.8)})
= 3.2 - 4.8
= -1.60
(\sqrt{50} + \frac{10}}{\sqrt{2}} = (\frac{\sqrt{50}}{1} + \sqrt{10}{\sqrt{2}})
= (\frac{\sqrt{50 \times 2} + 10}{\sqrt{2}})
= (\frac{\sqrt{100} + 10}{\sqrt{2}})
= (\frac{10 + 10}{\sqrt{2} = \frac{20}{\sqrt{2}})
= (\frac{20}{\sqrt{2}}) \times \frac{\sqrt{2}}{\sqrt{2}})
= (\frac{20\sqrt{2}}{2})
= 10(\sqrt{2})
I = (\frac{PRT}{100})
where r = r% p.a; I = 0.36p
0.36p = (\frac{P \times r \times 4}{100})
(\frac{0.36 \times 100}{4}) = r
r = 9
Cost price, c.p = (\frac{100}{5}) x N350 = N7000
Selling price, s.p = (\frac{100}{5}) x N290 = N7250
%Gain = (\frac{S.p - C.p}{C.p}) x 100%
= (\frac{7250 - 7000}{7000}) x 100% = (\frac{250 \times 100}{7000})
= 3.6% (approx.)
p - 2g + 1 = g + 3p.........(1)
p - 2 = 0 .........(2)
From (2), p = 2; put p = 2 into (1);
2 - 2g + 1 = g + 3(2)
3 - 2g = g + 6
-2g - g = 6 - 3
-3g = 3
g = (\frac{3}{-3})
g = -1
(\frac{\frac{1}{x} + \frac{1}{y}}{x + y}) = (\frac{\frac{y + x}{xy}}{x + y})
= (\frac{x + y}{xy})
= (\frac{x + y}{xy} \times \frac{1}{x + y})
= (\frac{1}{xy})
3(\sqrt{27x^3y^9}) = 3(\sqrt{27} \times 3\sqrt{3^3} \times 3\sqrt{y^9})
= 3 (\times x \times y^3)
= 3xy3
Given; x = 2; y = (\frac{-1}{4})
= (\frac{x^2y - 2xy}{5})
= (\frac{2^2(\frac{-1}{4}) - 2(2)(\frac{-1}{4})}{5})
= (\frac{4(\frac{-1}{4}) + 4(\frac{-1}{4})}{5})
= (\frac{1 + 1}{5})
= (\frac{0}{5})
= 0
5y2 + 2ay - 3a2 = 5y2 + 5ay - 3a2
= 5y(y + a) - 3a(y + a)
= (y + a)(5y - 3a)