2008 - WAEC Mathematics Past Questions and Answers - page 2
11
If 4y is 9 greater than the sum of y and 3x, by how much is greater than x?
A
3
B
6
C
9
D
12
correct option: a
4y - 9 > y + 3x; 4y - y > 3x + 9
3y > 3(x + 3); y = > \(\frac{3(x + 3)}{3}\)
y > x + 3; y - 3 > x
y is greater than x
Users' Answers & Comments3y > 3(x + 3); y = > \(\frac{3(x + 3)}{3}\)
y > x + 3; y - 3 > x
y is greater than x
12
If p = \(\frac{3}{5} \sqrt{\frac{q}{r}}\), express q in terms of p and r
A
\(\frac{9}{25} pr^2\)
B
\(\frac{9}{25} p^2r\)
C
\(\frac{25}{9} p^2r\)
D
\(\frac{25}{9} pr^2\)
correct option: c
p = \(\frac{3}{5} \sqrt{\frac{q}{r}}; \frac{5p}{3} = \sqrt{\frac{q}{r}}\)
= (\(\frac{5}{3}p\))2
= \(\frac{q}{r}\)
= \(\frac{25p^2}{9} = \frac{q}{r}\)
q = \(\frac{25}{9} p^2 r\)
Users' Answers & Comments= (\(\frac{5}{3}p\))2
= \(\frac{q}{r}\)
= \(\frac{25p^2}{9} = \frac{q}{r}\)
q = \(\frac{25}{9} p^2 r\)
13
Simplify: \(\frac{2x^2 - 5x - 12}{4x^2 - 9}\)
A
\(\frac{x + 4}{2x + 3}\)
B
\(\frac{x + 4}{2x - 3}\)
C
\(\frac{x - 4}{2x + 3}\)
D
\(\frac{x - 4}{2x - 3}\)
correct option: d
\(\frac{2x^2 - 5x - 12}{4x^2 - 9}\) = \(\frac{3x^2 - 8x + 3x - 12}{(2x)^2 - 3^2}\)
= \(\frac{32(x - 4) + 3(x - 4)}{(2x - 3)(2x + 3)} - \frac{(x - 4) + (2x + 3)}{(2x - 3) (2x + 3)}\)
= \(\frac{x - 4}{2x - 3}\)
Users' Answers & Comments= \(\frac{32(x - 4) + 3(x - 4)}{(2x - 3)(2x + 3)} - \frac{(x - 4) + (2x + 3)}{(2x - 3) (2x + 3)}\)
= \(\frac{x - 4}{2x - 3}\)
14
PQR is a sector of a circle centre O, radius 4cm. If PQR = 30o, find, correct to 3 significant figures, the area of sector PQR. [Take \(\pi = \frac{22}{7}\)]
A
4.19cm2
B
8.38cm2
C
10.5cm2
D
20.9cm2
correct option: a
Given q2 = 25 - r2.....(1)
from pythagora's theorem
P2 = q2 + r2.......(2)
put (1) into (2)
p2 = 25 - p2 + x2
p2 = 25
p = \(\sqrt{25}\)
= 5
Users' Answers & Commentsfrom pythagora's theorem
P2 = q2 + r2.......(2)
put (1) into (2)
p2 = 25 - p2 + x2
p2 = 25
p = \(\sqrt{25}\)
= 5
15
If the volume of a cube is 343cm3, find the length of its side
A
3cm
B
6cm
C
7cm
D
96cm
correct option: c
Volume of a cube = (side)3
= (side)3
(side)3 = 343
side = 3\(\sqrt{343}\)
side = 7cm
Users' Answers & Comments= (side)3
(side)3 = 343
side = 3\(\sqrt{343}\)
side = 7cm
16
The angles of a quadrilateral are (x + 10)o, 2yo, 90o and (100 - y)o, Find y in terms of x
A
y = 160 + x
B
y = 100 + x
C
y = 160 - x
D
y = x - 100
correct option: c
Sum of the angles in a quadrilateral = 360o
(x + 10o) + 2y + 90o + 100 - y = 360o
x + y + 200 = 360o
y = 360 - 200 - x
y = 160 - x
Users' Answers & Comments(x + 10o) + 2y + 90o + 100 - y = 360o
x + y + 200 = 360o
y = 360 - 200 - x
y = 160 - x
17
If xo is obtuse, which of the following is true?
A
x . 90
B
180 < x < 270
C
x < 90
D
90 < x < 180
18
If tan x = 1, evaluate sin x + cos x, leaving your answer in the surd form
A
2\(\sqrt{2}\)
B
\(\frac{1}{2} \sqrt{2}\)
C
\(\sqrt{2}\)
D
2
correct option: c
tan x = 1; x = tan-1(10 = 45o
sin x + cos x
= sin 45o + cos 45o
= \(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}\)
= \(\frac{\sqrt{2} + \sqrt{2}}{2}\)
= \(\frac{2\sqrt{2}}{2}\)
= \(\sqrt{2}\)
Users' Answers & Commentssin x + cos x
= sin 45o + cos 45o
= \(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}\)
= \(\frac{\sqrt{2} + \sqrt{2}}{2}\)
= \(\frac{2\sqrt{2}}{2}\)
= \(\sqrt{2}\)
19
If cos (x + 25)o = sin 45o, find the value of x
A
20
B
30
C
45
D
60
correct option: a
cos(x + 25o) = sin 45o
using cos \(\theta\) = sin(90 - \(\theta\))
cos(x + 25o) = cos(90 - 45)
cos(x + 25o) = cos 45
x + 25 = 45
x = 45 - 25
x = 20o
Users' Answers & Commentsusing cos \(\theta\) = sin(90 - \(\theta\))
cos(x + 25o) = cos(90 - 45)
cos(x + 25o) = cos 45
x + 25 = 45
x = 45 - 25
x = 20o
20
If 2n = 128, find the value of (2n - 1)(5n - 1)
A
5(106)
B
2(106)
C
5(105)
D
2(105)
correct option: d
2n = 128
2n = 27
n = 7
(2n - 1)(5n - 2) = (2n - 2.2)(5n - 2) put n = 7
(2n - 1)(5n - 2) = 2(2n - 2 x 5n - 2)
= 2(2 x 5)n - 2
= 2(10n - 2) put n = 7
(2n-1)(5n-2) = 2(105)
Users' Answers & Comments2n = 27
n = 7
(2n - 1)(5n - 2) = (2n - 2.2)(5n - 2) put n = 7
(2n - 1)(5n - 2) = 2(2n - 2 x 5n - 2)
= 2(2 x 5)n - 2
= 2(10n - 2) put n = 7
(2n-1)(5n-2) = 2(105)