2016 - WAEC Mathematics Past Questions and Answers - page 4
First, arrange the marks in order of magnitude; 3, 4, 5, 7, 10, 13, 14, 16
Hence range = 16 - 3 = 13
Log2(3x - 1) = 5
Log2(3x - 1) = Log225
Log2(3x - 1) = Log232
3x - 1 = 32
3x = 32 + 1 = 33
x = (\frac{33}{3})
= 11
Volume of sphere = Volume of cylinder
i.e. (\frac{4}{3} \pi r^3 = \pi r^2 h)
(\frac{4}{3} \pi r^3 = \pi \times 3^2 \times 4)
r3 = (\frac{\pi \times 9 \times 4 \times 3}{4 \pi})
r = 3(\sqrt{27})
= 3
Area of (\Delta) QNP = (\frac{1}{2} \times 9 \times 6 ) = 27cm2
Area of (\Delta) QMN = Area of (\Delta) QNP
= Area of (\Delta) PNO (triangles between the same parallels)
Hence, area of the trapezium
3 x area of (\Delta) QNP
= 3 x 27
= 81cm2
Perimeter of a sector
= 2r + (\frac{\theta}{360^o}) x 2 x (\frac{22}{7}) x 21
64 = 2 x 21 + (\frac{\theta}{360^o}) x 2 x (\frac{22}{7}) x 21
64 = 42 + (\frac{\theta}{360^o}) x 44 x 3
64 - 42 = (\frac{\theta}{360^o}) x 11 x 3
22 = (\frac{33\theta}{90})
(\theta = \frac{22 \times 30}{11})
= 60o
From the venn diagram given,
M = (a, b, c), N = (c, f, g)
U = (a, b, c, d, e, f, g)
Thus M' (\cap) N = (e, f, g) (\cap) (c, f, g)
= (f, g)
First, reduce 20(mod 9) to its simplest form in mod 9; 9 x 2 + 2 = 2(mod 9)
If 2(mod 9) y(mod 6), then y = 2 by comparism
(\frac{(p - r)^2 - r^2}{2p^2 - 4pr})
= (\frac{(p - r)(p - r) - r^2}{2p^2 - 4pr})<br />
= (\frac{p^2 - 2pr + r^2 - r^2}{2p(p - 2r})
= (\frac{p^2 - 2pr}{2p(p - 2r)})
= (\frac{p(p - 2r)}{2p(p - 2r)})
= (\frac{1}{2})
In the diagram, < RPQ = 80o(angles in same segment)
< SPR = 100o - < RPQ
= 100 - 80
= 20o
< SQR = < SPR = 20o (same reason as above)
< SQR = 20o