2016 - WAEC Mathematics Past Questions and Answers - page 1
23x + 101x = 130x
2 x X1 + 3 x Xo + 1 x X2 + 0 x X1 + 1 x Xo
= 1 x Xo = 1 x X2 + 3 x X1 + 0 x Xo
= X2 + 3x + 0
2x + 3 = x2 + 0 + 1 + x2 + 3x
2x - 3x + x2 - x2 = -3 - 1
- x = -4
x = 4
Users' Answers & Comments((\frac{3}{4} - \frac{2}{3})) x 1(\frac{1}{5})
= ((\frac{9 - 8}{12} \times \frac{6}{5}))
= (\frac{1}{12} \times \frac{6}{5})
= (\frac{1}{10})
Note that (\frac{10\sqrt{3}}{\sqrt{5}} = \frac{10\sqrt{3}}{\sqrt{5}} \times - \frac{\sqrt{5}}{\sqrt{5}})
= (\frac{10\sqrt{15}}{\sqrt{5}} = 2\sqrt{15})
hence, ((\frac{10\sqrt{3}}{\sqrt{5}} - \sqrt{15}))2 = ((2\sqrt{15} - \sqrt{15}))2
= ((2\sqrt{15} - \sqrt{15}))((2\sqrt{15} - \sqrt{15}))
= 4(\sqrt{15 \times 15} - 2\sqrt{15 \times 15} - 2\sqrt{15 x 15} + \sqrt{15 \times 15})
= 4 x 15 - 2 x 15 - 2 x 15 + 15
= 60 - 30 - 30 + 15
= 15
d (\alpha) t2
d = t2 k
where k is a constant. d = 45cm, when t = 3s; thus 45 = 32 x t
k = (\frac{45}{9}) = 5
thus equation connecting d and t is d = 5t2
when t = 6s, d = 5 x 62
= 5 x 36
= 180cm
From the venn diagram, Nigeria footballers from a subset of good footballers.
Users' Answers & CommentsOn a map, 1cm represents 5km. Then it follows that 1cm2 represents 25km2. Acm2 represents 100km2. By apparent cross-multiplication, 1cm2 x 100km2 = Acm2x 25km2
therefore A = (\frac{100}{25}) = 4cm2
(\frac{3^{n - 1} \times 27^{n + 1}}{81^{n}})
= (\frac{3^{n - 1} \times 3^{3(n + 1)}}{3^{4n}})
= 3(^{n - 1 + 3n + 3 - 4n})
= 3(^{4n - 4n - 1 + 3})
= 32
= 9
A = P + 1
I = A - P
= 10,400 - P
Now using I = (\frac{P \times T \times R}{100})
i.e. 10,400 - P = (\frac{P \times 5 \times 6}{100})
= 100(10,400 - P) = 30P
10(10,400 - P) = 3P
104,000 - 10P = 3P
104,000 - 10P = 3P
104,000 = 3P + 10P
= 104,000 = 13P
P = (\frac{104,000}{100})
P = D8,000
Let x = (\frac{4}{3}), x = -(\frac{3}{7})
Then 3x = 4, 7x = -3
3x - 4 = 0, 7x + 3 = 0
(3x - 4)(7x + 3) = 0
21x2 + 9x - 28x - 12 = 0
21x2 - 19x - 12 = 0
(\frac{y^2 - 9y + 18}{y^2 + 4y - 21})
Factorize the denominator;
Y2 + 7y - 3y - 21
= y(y + 7) -3 (y + 7)
= (y - 3)(y + 7)
Hence the expression (\frac{y^2 - 9y + 18}{y^2 + 4y - 21}) is undefined
when y2 + 4y - 21 = 0
ie. y = 3 or -7